4,932 research outputs found

    A non-perturbative argument for the non-abelian Higgs mechanism

    Full text link
    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge.Comment: The new version differs from version 1 by the correction of a few misprint

    Strong hole-photon coupling in planar Ge: probing the charge degree and Wigner molecule states

    Full text link
    Semiconductor quantum dots (QDs) in planar germanium (Ge) heterostructures have emerged as frontrunners for future hole-based quantum processors. Notably, the large spin-orbit interaction of holes offers rapid, coherent electrical control of spin states, which can be further beneficial for interfacing hole spins to microwave photons in superconducting circuits via coherent charge-photon coupling. Here, we present strong coupling between a hole charge qubit, defined in a double quantum dot (DQD) in a planar Ge, and microwave photons in a high-impedance (Zr=1.3 kΩZ_\mathrm{r} = 1.3 ~ \mathrm{k}\Omega) superconducting quantum interference device (SQUID) array resonator. Our investigation reveals vacuum-Rabi splittings with coupling strengths up to g0/2π=260 MHzg_{0}/2\pi = 260 ~ \mathrm{MHz}, and a cooperativity of C∼100C \sim 100, dependent on DQD tuning, confirming the strong charge-photon coupling regime within planar Ge. Furthermore, utilizing the frequency tunability of our resonator, we explore the quenched energy splitting associated with strongly-correlated Wigner molecule (WM) states that emerge in Ge QDs. The observed enhanced coherence of the WM excited state signals the presence of distinct symmetries within related spin functions, serving as a precursor to the strong coupling between photons and spin-charge hybrid qubits in planar Ge. This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.Comment: 22 pages, 12 figure

    Band engineering and study of disorder using topology in compact high kinetic inductance cavity arrays

    Full text link
    Superconducting microwave metamaterials offer enormous potential for quantum optics and information science, enabling the development of advanced quantum technologies for sensing and amplification. In the context of circuit quantum electrodynamics, such metamaterials can be implemented as coupled cavity arrays (CCAs). In the continuous effort to miniaturize quantum devices for increasing scalability, minimizing the footprint of CCAs while preserving low disorder becomes paramount. In this work, we present a compact CCA architecture leveraging superconducting NbN thin films presenting high kinetic inductance, which enables high-impedance CCA (∼1.5\sim1.5 kΩ\Omega), while reducing the resonator footprint. We demonstrate its versatility and scalability by engineering one-dimensional CCAs with up to 100 resonators and exhibiting multiple bandgaps. Additionally, we quantitatively investigate disorder in the CCAs using symmetry-protected topological SSH modes, from which we extract a resonator frequency scattering of 0.22−0.03+0.04%0.22^{+0.04}_{-0.03}\%. Our platform opens up exciting new prospects for analog quantum simulations of many-body physics with ultrastrongly coupled emitters

    Non small-cell lung cancer with metastasis to thigh muscle and mandible: two case reports

    Get PDF
    INTRODUCTION: Lung cancer is the leading cause of cancer-related death in Europe and the US. Isolated metastases to skeletal muscle and the mandible are very uncommon. CASE PRESENTATION: This report presents two cases. Case 1 concerns a 45-year-old Caucasian woman affected by muscle metastasis of the right thigh from non-small-cell lung cancer. Case 2 concerns a 61-year-old Caucasian man affected by mandible metastasis from non-small-cell lung cancer. Both metastases were detected by diagnostic imaging studies. Both patients were treated with radiation therapy with palliative and antalgic intent. CONCLUSION: Radiation therapy was effective and well tolerated in both cases. Both our patients are alive, with follow-up of 18 months and five months, respectively

    Storia della Lancia. Impresa Tecnologie Mercati 1906-1969

    Get PDF
    - Indice #9- Premessa e riconoscimento #12- La fabbrica e il territorio urbano #151- Tecnologia e organizzazione produttiva alla Lancia (1906-1969) #207- Cinquant'anni di relazioni industriali alla Lancia (1919-1969) #263- La Lancia come fenomeno tecnico #303- Le corse della Lancia #333- Lancia, 60 anni di prodotto le automobili e i veicoli industriali #34

    Effects of two different decellularization routes on the mechanical properties of decellularized lungs

    Get PDF
    Considering the limited number of available lung donors, lung bioengineering using whole lung scaffolds has been proposed as an alternative approach to obtain lungs suitable for transplantation. However, some decellularization protocols can cause alterations on the structure, composition, or mechanical properties of the lung extracellular matrix. Therefore, the aim of this study was to compare the acellular lung mechanical properties when using two different routes through the trachea and pulmonary artery for the decellularization process. This study was performed by using the lungs excised from 30 healthy male C57BL/6 mice, which were divided into 3 groups: tracheal decellularization (TDG), perfusion decellularization (PDG), and control groups (CG). Both decellularized groups were subjected to decellularization protocol with a solution of 1% sodium dodecyl sulfate. The behaviour of mechanical properties of the acellular lungs was measured after decellularization process. Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. TDG and PDG showed reduced Est and Edyn elastances after lung decellularization. Scanning electron microscopy showed no structural changes after lung decellularization of the TDG and PDG. In conclusion, was demonstrated that there is no significant difference in the behaviour of mechanical properties and extracellular matrix of the decellularized lungs by using two different routes through the trachea and pulmonary artery

    Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by irreversible airflow limitation, airway inflammation and remodeling, and enlargement of alveolar spaces. COPD is in the top five leading causes of deaths worldwide and presents a high economic cost. However, there are some preventive measures to lower the risk of developing COPD. Low-level laser therapy (LLLT) is a new effective therapy, with very low cost and no side effects. So, our objective was to investigate if LLLT reduces pulmonary alterations in an experimental model of COPD. C57BL/6 mice were submitted to cigarette smoke for 75 days (2x/day). After 60 days to smoke exposure, the treated group was submitted to LLLT (diode laser, 660 nm, 30 mW, and 3 J/cm(2)) for 15 days and euthanized for morphologic and functional analysis of the lungs. Our results showed that LLLT significantly reduced the number of inflammatory cells and the proinflammatory cytokine secretion such as IL-1 beta, IL-6, and TNF-alpha in bronchoalveolar lavage fluid (BALF). We also observed that LLLT decreased collagen deposition as well as the expression of purinergic P2X7 receptor. On the other hand, LLLT increased the IL-10 release. Thus, LLLT can be pointed as a promising therapeutic approach for lung inflammatory diseases as COPD.Sao Paulo Research Foundation (FAPESP) [2012/16498-5, 2012/15165-2]FAPESP [2015/23152-6, 2014/14604-8, 2015/13486-4]Univ Nove Julho UNINOVE, Post Grad Program Biophoton Appl Hlth Sci, Sao Paulo, SP, BrazilBrazilian Inst Teaching & Res Pulm & Exercise Imm, Sao Jose Dos Campos, SP, BrazilUniv Nove Julho UNINOVE, Masters Degree & PhD Program Rehabil Sci, Expt Cardioresp Physiol Lab, Sao Paulo, SP, BrazilUniv Calif San Diego UCSD Hlth Sci, Div Trauma Surg Crit Care Burns & Acute Care Surg, Dept Surg, San Diego, CA USAFed Univ Sao Paulo UNIFESP, Inst Sci & Technol, Sao Jose Dos Campos, SP, BrazilUniv Brasil, Postgrad Program Bioengn, Sao Paulo, SP, BrazilFed Univ Sao Paulo UNIFESP, Postgrad Program Sci Human Movement & Rehabil, Santos, SP, BrazilFed Univ Sao Paulo UNIFESP, Inst Sci & Technol, Sao Jose Dos Campos, SP, BrazilFed Univ Sao Paulo UNIFESP, Postgrad Program Sci Human Movement & Rehabil, Santos, SP, BrazilFAPESP [2012/16498-5, 2012/15165-2]FAPESP [2015/23152-6, 2014/14604-8, 2015/13486-4]Web of Scienc

    TÉCNICA DE DESCELULARIZAÇÃO DE PULMÕES PARA A BIOENGENHARIA DE ÓRGÃOS

    Get PDF
    As principais doenças do sistema respiratório, tais como a obstrução pulmonar crônica, o enfisema pulmonar, a fibrose pulmonar idiopática e a hipertensão arterial pulmonar primária, tem como resultado um dano estrutural no parênquima pulmonar irreversível, sendo o transplante pulmonar a única indicação terapêutica. Infelizmente, o sucesso do transplante pulmonar é limitado, principalmente devido à escassez do número de doadores de órgãos e incidência de bronquiolite obliterante o que resulta em uma resposta aloimune provocada pelas disparidades entre o doador e os antígenos do receptor. Neste contexto, a bioengenharia de pulmões é considerada uma alternativa terapêutica em potencial. Este estudo visa demonstrar em um modelo experimental animal o processo de descelularização de pulmões visando a preparação de scaffolds para a recriação artificial de órgãos. A matriz de órgãos descelularizados, potencialmente, mantém a arquitetura tridimensional e a composição bioquímica, bem como a microvasculatura do tecido original. Esta capacidade torna o pulmão descelularizado promissor para a geração bioartificial de pulmões funcionais

    Inhibition of exosome biogenesis affects cell motility in heterogeneous sub-populations of paediatric-type diffuse high-grade gliomas

    Get PDF
    Background: Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. Results: A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. Conclusions: In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases
    • …
    corecore