224 research outputs found
Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons
A robust and automated protocol for the derivation of sound force field parameters, suitable for condensed-phase classical simulations, is here tested and validated on several halogenated hydrocarbons, a class of compounds for which standard force fields have often been reported to deliver rather inaccurate performances. The major strength of the proposed protocol is that all of the parameters are derived only from first principles because all of the information required is retrieved from quantum mechanical data, purposely computed for the investigated molecule. This a priori parametrization is carried out separately for the intra- and intermolecular contributions to the force fields, respectively exploiting the Joyce and Picky programs, previously developed in our group. To avoid high computational costs, all quantum mechanical calculations were performed exploiting the density functional theory. Because the choice of the functional is known to be crucial for the description of the intermolecular interactions, a specific procedure is proposed, which allows for a reliable benchmark of different functionals against higher-level data. The intramolecular and intermolecular contribution are eventually joined together, and the resulting quantum mechanically derived force field is thereafter employed in lengthy molecular dynamics simulations to compute several thermodynamic properties that characterize the resulting bulk phase. The accuracy of the proposed parametrization protocol is finally validated by comparing the computed macroscopic observables with the available experimental counterparts. It is found that, on average, the proposed approach is capable of yielding a consistent description of the investigated set, often outperforming the literature standard force fields, or at least delivering results of similar accuracy
The Impact of Highly Effective Treatment in Pediatric-Onset Multiple Sclerosis: A Case Series
Pediatric-onset multiple sclerosis (POMS) is characterized by high inflammatory disease activity. Our aim was to describe the treatment sequencing and report the impact highly effective disease-modifying treatment (HET) had on disease activity
Charge Measurement of Cosmic Ray Nuclei with the Plastic Scintillator Detector of DAMPE
One of the main purposes of the DArk Matter Particle Explorer (DAMPE) is to
measure the cosmic ray nuclei up to several tens of TeV or beyond, whose origin
and propagation remains a hot topic in astrophysics. The Plastic Scintillator
Detector (PSD) on top of DAMPE is designed to measure the charges of cosmic ray
nuclei from H to Fe and serves as a veto detector for discriminating gamma-rays
from charged particles. We propose in this paper a charge reconstruction
procedure to optimize the PSD performance in charge measurement. Essentials of
our approach, including track finding, alignment of PSD, light attenuation
correction, quenching and equalization correction are described detailedly in
this paper after a brief description of the structure and operational principle
of the PSD. Our results show that the PSD works very well and almost all the
elements in cosmic rays from H to Fe are clearly identified in the charge
spectrum.Comment: 20 pages, 4 figure
Effect of Lactoferrin on Clinical Outcomes of Hospitalized Patients with COVID-19: The LAC Randomized Clinical Trial
: As lactoferrin is a nutritional supplement with proven antiviral and immunomodulatory abilities, it may be used to improve the clinical course of COVID-19. The clinical efficacy and safety of bovine lactoferrin were evaluated in the LAC randomized double-blind placebo-controlled trial. A total of 218 hospitalized adult patients with moderate-to-severe COVID-19 were randomized to receive 800 mg/die oral bovine lactoferrin (n = 113) or placebo (n = 105), both given in combination with standard COVID-19 therapy. No differences in lactoferrin vs. placebo were observed in the primary outcomes: the proportion of death or intensive care unit admission (risk ratio of 1.06 (95% CI 0.63-1.79)) or proportion of discharge or National Early Warning Score 2 (NEWS2) ≤ 2 within 14 days from enrollment (RR of 0.85 (95% CI 0.70-1.04)). Lactoferrin showed an excellent safety and tolerability profile. Even though bovine lactoferrin is safe and tolerable, our results do not support its use in hospitalized patients with moderate-to-severe COVID-19
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis
Objective: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS).
Methods: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results.
Results: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p = 0.015) with increased risk of severe COVID-19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p = 0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses.
Interpretation: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists
- …