4,961 research outputs found
Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs
Future nano-scale electronics built up from an Avogadro number of components
needs efficient, highly scalable, and robust means of communication in order to
be competitive with traditional silicon approaches. In recent years, the
Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect
challenges in silicon-based electronics. Current NoC architectures are either
highly regular or fully customized, both of which represent implausible
assumptions for emerging bottom-up self-assembled molecular electronics that
are generally assumed to have a high degree of irregularity and imperfection.
Here, we pragmatically and experimentally investigate important design
trade-offs and properties of an irregular, abstract, yet physically plausible
3D small-world interconnect fabric that is inspired by modern network-on-chip
paradigms. We vary the framework's key parameters, such as the connectivity,
the number of switch nodes, the distribution of long- versus short-range
connections, and measure the network's relevant communication characteristics.
We further explore the robustness against link failures and the ability and
efficiency to solve a simple toy problem, the synchronization task. The results
confirm that (1) computation in irregular assemblies is a promising and
disruptive computing paradigm for self-assembled nano-scale electronics and (2)
that 3D small-world interconnect fabrics with a power-law decaying distribution
of shortcut lengths are physically plausible and have major advantages over
local 2D and 3D regular topologies
Corrigendum: Effects of a 3-week inpatient multidisciplinary body weight reduction program on body composition and physical capabilities in adolescents and adults with obesity
A correction has been made to Funding. The correct Funding statement is: “Research funded by the Italian Ministry of Health.” The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated
Increased pump acceptance bandwidth in spontaneous parametric downconversion process using Bragg reflection waveguides
In this paper we show that by suitably tailoring the dispersion
characteristics of a Bragg reflection waveguide (BRW) mode, it is possible to
achieve efficient photon pair generation over a large pump bandwidth while
maintaining narrow signal bandwidth. The structure proposed consists of a high
index core BRW with a periodically poled GaN core and periodically stratified
cladding made up of alternate layers of and
. Such photon-pair generators should find applications in
realizing compact and stable sources for quantum information processing.Comment: 6 pages, 5 figure
Orbiting Resonances and Bound States in Molecular Scattering
A family of orbiting resonances in molecular scattering is globally described
by using a single pole moving in the complex angular momentum plane. The
extrapolation of this pole at negative energies gives the location of the bound
states. Then a single pole trajectory, that connects a rotational band of bound
states and orbiting resonances, is obtained. These complex angular momentum
singularities are derived through a geometrical theory of the orbiting. The
downward crossing of the phase-shifts through pi/2, due to the repulsive region
of the molecular potential, is estimated by using a simple hard-core model.
Some remarks about the difference between diffracted rays and orbiting are also
given.Comment: 18 pages, 3 figures, to appear in Physical Review
Effects of combined training or moderate intensity continuous training during a 3-week multidisciplinary body weight reduction program on cardiorespiratory fitness, body composition, and substrate oxidation rate in adolescents with obesity
This study aimed to investigate the effects of combined training (COMB, a combination of moderate-intensity continuous training-MICT and high-intensity interval training-HIIT) vs. continuous MICT administered during a 3-week in-hospital body weight reduction program (BWRP) on body composition, physical capacities, and substrate oxidation in adolescents with obesity. The 3-week in-hospital BWRP entailed moderate energy restriction, nutritional education, psychological counseling, and two different protocols of physical exercise. Twenty-one male adolescents with obesity (mean age: 16.1 ± 1.5 years; mean body mass index [BMI] 37.8 ± 4.5 kg m−2) participated in this randomized control trial study (n:10 for COMB, n:11 MICT), attending ~ 30 training sessions. The COMB group performed 3 repetitions of 2 min at 95% of peak oxygen uptake (V′O2 peak) (e.g., HIIT ≤ 20%), followed by 30 min at 60% of V′O2 peak (e.g., MICT ≥ 80%). Body composition, V′O2 peak, basal metabolic rate (BMR), energy expenditure, and substrate oxidation rate were measured during the first week (W0) and at the end of three weeks of training (W3). The two training programs were equivalent in caloric expenditure. At W3, body mass (BM) and fat mass (FM) decreased significantly in both groups, although the decrease in BM was significantly greater in the MICT group than in the COMB group (BM: − 5.0 ± 1.2 vs. − 8.4 ± 1.5, P < 0.05; FM: − 4.3 ± 3.0 vs. − 4.2 ± 1.9 kg, P < 0.05). V′O2 peak increased only in the COMB by a mean of 0.28 ± 0.22 L min−1 (P < 0.05). The maximal fat oxidation rate (MFO) increased only in the COMB group by 0.04 ± 0.03 g min−1 (P < 0.05). COMB training represents a viable alternative to MICT for improving anthropometric characteristics, physical capacities, and MFO in adolescents with obesity during a 3-week in-hospital BWRP
Artefacts and <A2> power corrections : revisiting the MOM Z_psi and Z_V
We extract the power corrections due to the A^2 condensate in the overlap
quark propagator (vector part of the inverse propagator Z_psi). The results are
consistent with the previous gluon analysis. The role of artefacts is
extensively discussed.Comment: 33 pages, 5 figure
Acute respiratory muscle unloading improves time-to-exhaustion during moderate- and heavy-intensity cycling in obese adolescent males
Obesity significantly impairs breathing during exercise. The aim was to determine, in male obese adolescents (OB), the effects of acute respiratory muscle unloading, obtained by switching the inspired gas from ambient air (AIR) to a normoxic helium + oxygen gas mixture (HeO2) (AIR \u2192 HeO2) during moderate [below gas exchange threshold (GET)] and heavy [above GET] constant work rate cycling. Ten OB [age 16.0 \ub1 2.0\ua0years (mean \ub1 SD); body mass index (BMI) 38.9 \ub1 6.1\ua0kg/m2] and ten normal-weight age-matched controls (CTRL) inspired AIR for the entire exercise task, or underwent AIR \u2192 HeO2 when they were approaching volitional exhaustion. In OB time to exhaustion (TTE) significantly increased in AIR \u2192 HeO2 vs. AIR during moderate [1524 \ub1 480\ua0s vs. 1308 \ub1 408 (P = 0.024)] and during heavy [570 \ub1 306\ua0s vs. 408 \ub1 150 (P = 0.0154)] exercise. During moderate exercise all CTRL completed the 40-min task. During heavy exercise no significant differences were observed in CTRL for TTE (582 \ub1 348\ua0s [AIR \u2192 HeO2] vs. 588 \ub1 252 [AIR]). In OB, but not in CTRL, acute unloading of respiratory muscles increased TTE during both moderate- and heavy-exercise. In OB, but not in CTRL, respiratory factors limit exercise tolerance during both moderate and heavy exercise
Performance Driven Reliable Link Design for Networks on Chips
With decreasing feature size of transistors, the interconnect wire delay is becoming a major bottleneck in current Systems on Chips (SoCs). Another effect of shrinking feature size is that the wires are becoming unrealable as they are increasingly susceptible to various noise sources such as cross-talk, coupling noise, soft errors etc. Increasing importance of wire delay an reliability has lead to a communication centric design approach, Networks in Chip (NoC), for building complex SoCs. Current NoC communication design methodologies are based on conservative design approaches and consider worst case operating conditions for link design, resulting in lare latency penalty for data transmission. In order to substantially descrease the link delay and therby increase system performance an aggressive design approach is needed. In this work we present Terror, timing error tolerant communication system, for aggressively design the links of NoCs. In our methodology, instead of avoiding timing errors by worst-case design, we do aggressive design by tolerating timing errors. Simulation results show large latency savings (up to 35%) for the Terror based system compared to traditional design methodology
apeNEXT: A multi-TFlops Computer for Simulations in Lattice Gauge Theory
We present the APE (Array Processor Experiment) project for the development
of dedicated parallel computers for numerical simulations in lattice gauge
theories. While APEmille is a production machine in today's physics simulations
at various sites in Europe, a new machine, apeNEXT, is currently being
developed to provide multi-Tflops computing performance. Like previous APE
machines, the new supercomputer is largely custom designed and specifically
optimized for simulations of Lattice QCD.Comment: Poster at the XXIII Physics in Collisions Conference (PIC03),
Zeuthen, Germany, June 2003, 3 pages, Latex. PSN FRAP15. Replaced for adding
forgotten autho
Three-body interactions with cold polar molecules
We show that polar molecules driven by microwave fields give naturally rise
to strong three-body interactions, while the two-particle interaction can be
independently controlled and even switched off. The derivation of these
effective interaction potentials is based on a microscopic understanding of the
underlying molecular physics, and follows from a well controlled and systematic
expansion into many-body interaction terms. For molecules trapped in an optical
lattice, we show that these interaction potentials give rise to Hubbard models
with strong nearest-neighbor two-body and three-body interaction. As an
illustration, we study the one-dimensional Bose-Hubbard model with dominant
three-body interaction and derive its phase diagram.Comment: 8 pages, 4 figure
- …