2 research outputs found

    DEVELOPMENT OF HIGH-STRENGTH NIOBIUM ALLOYS FOR ELEVATED-TEMPERATURE APPLICATIONS

    Full text link
    A study to improve the elevated-temperature strength of niobium by solloving has resulted not only- in greatly improved strengths at 1200 and 1470 deg F but also in the development of improved fabrication techniques for these alloys. The most important step in the fabric:ition procedure of niobium and niobium-base allows is the initial breakdown of the cast structure. The cast structure of 1.84 wt. 4 chromium, 3.21 wt.% chromium. 4.33 wt. ' zirconium, and 20.5 wt.% titanium-4.28 wt. = chromium allovs and unalloyed niobium was broken known by- forging ingots (protected from oxidation by molybdenum ciins) at 2550 deg F and rolling at 800 deg F. After the initiai breakdown of the cast structure, the alloy-s were coid roiied to a total of 95 per cent reduction with no difficulty .A second fabrication technique was employed for a second set of alloys. Unalloyed niobium and 1.29 wt. % chromium, 2.74 wt. 3 zirconium, 4.5 wt.% molybdenum, and 10 wt. % titanium-3 wt.% chromium alloys were forged and rolled at 1000 deg F to break down the cast structure and then cold rolled to 0.030-in. sheet. the sheet obtained by this technique showed moderate edge cracking. Tensite tests on the coid-worked materiais at 1200 and 1470 deg F indicate that chromium and zirconium.ire both potent strengtheners of niobium: the 1.84 wt.% chromium alloy- hiid a 0.2 per cent offset yield strength of 107,000 psi at 1200 deg F and 69,000 psi at 1470 deg F, and the 4.33 wt. % zirconium alloy had a 0.2 per cent offset yield strength of 69,000 psi at 1470 deg F. Limited welding studies indicate that strong and reasonably ductlle welds can be produced both by arc and spot welding. (auth

    DEVELOPMENT OF HIGH-STRENGTH CORROSION-RESISTANT ZIRCONIUM ALLOYS

    Get PDF
    Approximately 100 ternary and quaternary spongezirconium alloys were screened for structural and cladding applications in a natural-uranium-fueled heavy-watermolerated power reactor. The alloy additions studied included2 to 4 wt.% Sn, 0.5 to 2 wt.% Mo, and 1 to 3 wt.% Nb. The effect of 0.1 wt.% Fe and 0.05 wt.% Ni additions to the experimental alloys was evaluated. All compositions were are melted, rolled at 850 ction prod- C from a helium- atmosphere furnace, vacuum annealed 4 hr at 700 ction prod- C, and furnace cooled. Room- and elevated-temperature hardness measurements were used to estimate the tensile strengths of the alloys, while corrosion resistance was evaluated by 1000-hr exposures to static 300 ction prod- C water. (auth
    corecore