20,084 research outputs found

    Wolf-Rayet nebulae as tracers of stellar ionizing fluxes: I. M1-67

    Get PDF
    We use WR124 (WN8h) and its associated nebula M1-67, to test theoretical non-LTE models for Wolf-Rayet (WR) stars. Lyman continuum ionizing flux distributions derived from a stellar analysis of WR124, are compared with nebular properties via photo-ionization modelling. Our study demonstrates the significant role that line blanketing plays in affecting the Lyman ionizing energy distribution of WR stars, of particular relevance to the study of HII regions containing young stellar populations. We confirm previous results that non-line blanketed WR energy distributions fail to explain the observed nebular properties of M1-67, such that the predicted ionizing spectrum is too hard. A line blanketed analysis of WR124 is carried out using the method of Hillier & Miller (1998), with stellar properties in accord with previous results, except that the inclusion of clumping in the stellar wind reduces its wind performance factor to only approx2. The ionizing spectrum of the line blanketed model is much softer than for a comparable temperature unblanketed case, such that negligible flux is emitted with energy above the HeI 504 edge. Photo-ionization modelling, incorporating the observed radial density distribution for M1-67 reveals excellent agreement with the observed nebular electron temperature, ionization balance and line strengths. An alternative stellar model of WR124 is calculated, following the technique of de Koter et al. (1997), augmented to include line blanketing following Schmutz et al. (1991). Good consistency is reached regarding the stellar properties of WR124, but agreement with the nebular properties of M1-67 is somewhat poorer than for the Hillier & Miller code.Comment: 12 pages, 5 figures, latex2e style file, Astronomy & Astrophysics (accepted

    Polynomial growth of volume of balls for zero-entropy geodesic systems

    Full text link
    The aim of this paper is to state and prove polynomial analogues of the classical Manning inequality relating the topological entropy of a geodesic flow with the growth rate of the volume of balls in the universal covering. To this aim we use two numerical conjugacy invariants, the {\em strong polynomial entropy hpolh_{pol}} and the {\em weak polynomial entropy hpolh_{pol}^*}. Both are infinite when the topological entropy is positive and they satisfy hpolhpolh_{pol}^*\leq h_{pol}. We first prove that the growth rate of the volume of balls is bounded above by means of the strong polynomial entropy and we show that for the flat torus this inequality becomes an equality. We then study the explicit example of the torus of revolution for which we can give an exact asymptotic equivalent of the growth rate of volume of balls, which we relate to the weak polynomial entropy.Comment: 22 page

    Surface-acoustic-wave driven planar light-emitting device

    Full text link
    Electroluminescence emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers for SAW generation were integrated onto pLEDs fabricated following the scheme which we have recently developed. Current-voltage, light-voltage and photoluminescence characteristics are presented at cryogenic temperatures. We argue that this scheme represents a valuable building block for advanced optoelectronic architectures

    Testing the binary hypothesis for the formation and shaping of planetary nebulae

    Full text link
    There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape the nebula and even for a planetary nebula to be formed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebulae and to compare it with that of the main sequence population. Preliminary results from photometric variability and the infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. This article briefly reviews these results and current studies aiming to refine the binary fraction.Comment: EUROWD12 Proceeding

    Planetary nebulae : getting closer to an unbiased binary fraction

    Full text link
    Why 80% of planetary nebulae are not spherical is not yet understood. The Binary Hypothesis states that a companion to the progenitor of the central star of a planetary nebula is required to shape the nebula and even for a planetary nebula to be formed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebula and to compare it with the main sequence population. Preliminary results from photometric variability and infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the putative main sequence progenitor population, implying that PNe could be preferentially formed via a binary channel. This article briefly reviews these results and future studies aiming to refine the binary fraction.Comment: SF2A 2012 proceeding

    On the generation of UHECRs in GRBs: a reappraisal

    Get PDF
    We re-examine critically the arguments raised against the theory that Ultra High Energy Cosmic Rays observed at Earth are produced in Gamma Ray Bursts. These include the limitations to the highest energy attainable by protons around the bursts' shocks, the spectral slope at the highest energies, the total energy released in non--thermal particles, the occurrence of doublets and triplets in the data reported by AGASA. We show that, to within the uncertainties in our current knowledge of GRBs, none of these objections is really fatal to the scenario. In particular, we show that the total energy budget of GRBs easily accounts for the energy injection rate necessary to account for UHECRs as observed at Earth. We also compute the expected particle spectrum at Earth, showing that it fits the HiRes and AGASA data to within statistical uncertainties. We consider the existence of multiplets in AGASA' data. To this end, we present a Langevin--like treatment for the motion of a charged particle in the IGM magnetic field, which allows us to estimate both the average and the rms timedelay for particles of given energy; we discuss when particles of identical energies reach the Earth in bunches, or spread over the rms timedelay, showing that multiplets pose no problem for an explosive model for the sources of UHECRs. We compare our model with a scenario where the particles are accelerated at internal shocks, underlining differences and advantages of particle acceleration at external shocks.Comment: Accepted for publication in the Astrophysical Journal; minor change

    On the terminal velocity of sedimenting particles in a flowing fluid

    Full text link
    The influence of an underlying carrier flow on the terminal velocity of sedimenting particles is investigated both analytically and numerically. Our theoretical framework works for a general class of (laminar or turbulent) velocity fields and, by means of an ordinary perturbation expansion at small Stokes number, leads to closed partial differential equations (PDE) whose solutions contain all relevant information on the sedimentation process. The set of PDE's are solved by means of direct numerical simulations for a class of 2D cellular flows (static and time dependent) and the resulting phenomenology is analysed and discussed.Comment: 13 pages, 2 figures, submitted to JP

    Enhancing the Violation of the Einstein-Podolsky-Rosen Local Realism by Quantum Hyper-entanglement

    Get PDF
    Mermin's observation [Phys. Rev. Lett. {\bf 65}, 1838 (1990)] that the magnitude of the violation of local realism, defined as the ratio between the quantum prediction and the classical bound, can grow exponentially with the size of the system is demonstrated using two-photon hyper-entangled states entangled in polarization and path degrees of freedom, and local measurements of polarization and path simultaneously.Comment: Minor errors corrected. To appear on Physical Review Letter

    Acoustic charge transport in n-i-n three terminal device

    Full text link
    We present an unconventional approach to realize acoustic charge transport devices that takes advantage from an original input region geometry in place of standard Ohmic input contacts. Our scheme is based on a n-i-n lateral junction as electron injector, an etched intrinsic channel, a standard Ohmic output contact and a pair of in-plane gates. We show that surface acoustic waves are able to pick up electrons from a current flowing through the n-i-n junction and steer them toward the output contact. Acoustic charge transport was studied as a function of the injector current and bias, the SAW power and at various temperatures. The possibility to modulate the acoustoelectric current by means of lateral in-plane gates is also discussed. The main advantage of our approach relies on the possibility to drive the n-i-n injector by means of both voltage or current sources, thus allowing to sample and process voltage and current signals as well.Comment: 9 pages, 3 figures. Submitted to Applied Physics Letter
    corecore