276 research outputs found

    Observations of the Sunyaev-Zel'dovich effect at high angular resolution towards the galaxy clusters A665, A2163 and CL0016+16

    Get PDF
    We report on the first observation of the Sunyaev-Zel'dovich effect with the Diabolo experiment at the IRAM 30 metre telescope. A significant brightness decrement is detected in the direction of three clusters (Abell 665, Abell 2163 and CL0016+16). With a 30 arcsecond beam and 3 arcminute beamthrow, this is the highest angular resolution observation to date of the SZ effect.Comment: 23 pages, 8 figures, 6 tables, accepted to New Astronom

    Rejection of randomly coinciding events in Li2_2100^{100}MoO4_4 scintillating bolometers using light detectors based on the Neganov-Luke effect

    Get PDF
    Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate 100^{100}Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double decay of 100^{100}Mo in enriched Li2_2100^{100}MoO4_4 detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of 750\sim 750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of 6×105\sim 6\times10^{-5} counts/(keV\cdotkg\cdoty), to the background counting rate in the region of interest for a large volume (90\sim 90 cm3^3) Li2_2100^{100}MoO4_4 detector. This background level is very encouraging in view of a possible use of the Li2_2100^{100}MoO4_4 solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project

    The SciCryo Project and Cryogenic Scintillation of Al2O3Al_2O_3 for Dark Matter

    No full text
    International audienceWe discuss cryogenic scintillation of Al2O3. Room-temperature measurements with α particles are first carried out to study effect of Ti concentration on response. Measurements under X-rays between room temperature and 10 K confirm a doubling of light output. The integration of a scintillation-phonon detector into an ionization-phonon dark matter search is underway, and the quenching factor for neutrons has been verified

    First results of the ROSEBUD Dark Matter experiment

    Full text link
    Rare Objects SEarch with Bolometers UndergrounD) is an experiment which attempts to detect low mass Weak Interacting Massive Particles (WIMPs) through their elastic scattering off Al and O nuclei. It consists of three small sapphire bolometers (of a total mass of 100 g) with NTD-Ge sensors in a dilution refrigerator operating at 20 mK in the Canfranc Underground Laboratory. We report in this paper the results of several runs (of about 10 days each) with successively improved energy thresholds, and the progressive background reduction obtained by improvement of the radiopurity of the components and subsequent modifications in the experimental assembly, including the addition of old lead shields. Mid-term plans and perspectives of the experiment are also presented.Comment: 14 pages, 8 figures, submitted to Astroparticle Physic

    Background suppression in massive TeO2_2 bolometers with Neganov-Luke amplified light detectors

    Full text link
    Bolometric detectors are excellent devices for the investigation of neutrinoless double-beta decay (0νββ\nu\beta\beta). The observation of such decay would demonstrate the violation of lepton number, and at the same time it would necessarily imply that neutrinos have a Majorana character. The sensitivity of cryogenic detectors based on TeO2_2 is strongly limited by the alpha background in the region of interest for the 0νββ\nu\beta\beta of 130^{130}Te. It has been demonstrated that particle discrimination in TeO2_2 bolometers is possible measuring the Cherenkov light produced by particle interactions. However an event-by-event discrimination with NTD-based light detectors has to be demonstrated. We will discuss the performance of a highly-sensitive light detector exploiting the Neganov-Luke effect for signal amplification. The detector, being operated with NTD-thermistor and coupled to a 750 g TeO2_2 crystal, shows the ability for an event-by-event identification of electron/gamma and alpha particles. The extremely low detector baseline noise, RMS 19 eV, demonstrates the possibility to enhance the sensitivity of TeO2_2-based 0νββ\nu\beta\beta experiment to an unprecedented level

    Calibration and First light of the Diabolo photometer at the Millimetre and Infrared Testa Grigia Observatory

    Full text link
    We have designed and built a large-throughput dual channel photometer, Diabolo. This photometer is dedicated to the observation of millimetre continuum diffuse sources, and in particular, of the Sunyaev-Zel'dovich effect and of anisotropies of the 3K background. We describe the optical layout and filtering system of the instrument, which uses two bolometric detectors for simultaneous observations in two frequency channels at 1.2 and 2.1 mm. The bolometers are cooled to a working temperature of 0.1 K provided by a compact dilution cryostat. The photometric and angular responses of the instrument are measured in the laboratory. First astronomical light was detected in March 1995 at the focus of the new Millimetre and Infrared Testa Grigia Observatory (MITO) Telescope. The established sensitivity of the system is of 7 mK_RJ s^1/2$. For a typical map of at least 10 beams, with one hour of integration per beam, one can achieve the rms values of y_SZ ~ 7 10^-5 and the 3K background anisotropy Delta T/T ~ 7 10^-5, in winter conditions. We also report on a novel bolometer AC readout circuit which allows for the first time total power measurements on the sky. This technique alleviates (but does not forbid) the use of chopping with a secondary mirror. This technique and the dilution fridge concept will be used in future scan--modulated space instrument like the ESA Planck mission project.Comment: 10 pages, LaTeX, 12 figures, accepted for publication in Astronomy and Astrophysics Supplement Serie

    First test of an enriched 116^{116}CdWO4_4 scintillating bolometer for neutrinoless double-beta-decay searches

    Full text link
    For the first time, a cadmium tungstate crystal scintillator enriched in 116^{116}Cd has been succesfully tested as a scintillating bolometer. The measurement was performed above ground at a temperature of 18 mK. The crystal mass was 34.5 g and the enrichment level ~82 %. Despite a substantial pile-up effect due to above-ground operation, the detector demonstrated a high energy resolution (2-7 keV FWHM in 0.2-2.6 MeV γ\gamma energy range), a powerful particle identification capability and a high level of internal radiopurity. These results prove that cadmium tungstate is an extremely promising detector material for a next-generation neutrinoless double-beta decay bolometric experiment, like that proposed in the CUPID project (CUORE Upgrade with Particle IDentification)

    Response of parylene-coated NaI(Tl) scintillators at low temperature

    Get PDF
    Despite that it is widely used as a scintillator at room temperature, the hygroscopicity of NaI complicates its handling and limits its application for many purposes, for example as a cryogenic detector. To overcome this problem we study coating materials that can act as humidity barriers, in particular parylene, a polymer that can be deposited in very radiopure, thin and conformal layers. In this work, several NaI(Tl) samples coated with 2-5 µm parylene-C were tested at low temperature. Luminescence spectra under X-ray excitation are presented at several temperatures as well as the light output vs temperature at 1.5-300 K. Several thermoluminescence peaks were observed at around 60, 95 and 150 K during warm up to room temperature The mechanical resistance of the coating under thermal cycles was also investigated, and we observed a degradation of the optical appearance and the light output after cooling down to about 100 mK, which compromises the reusability of the samples
    corecore