37 research outputs found
Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues
Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5–80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress–strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress–strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors
Presence of procoagulant peripheral blood mononuclear cells in severe COVID-19 patients relate to ventilation perfusion mismatch and precede pulmonary embolism
PURPOSE: Pulmonary emboli (PE) contribute substantially to coronavirus disease 2019 (COVID-19) related mortality and morbidity. Immune cell-mediated hyperinflammation drives the procoagulant state in COVID-19 patients, resulting in immunothrombosis. To study the role of peripheral blood mononuclear cells (PBMC) in the procoagulant state of COVID-19 patients, we performed a functional bioassay and related outcomes to the occurrence of PE. Secondary aims were to relate this functional assay to plasma D-dimer levels, ventilation perfusion mismatch and TF expression on monocyte subsets. METHODS: PBMC from an ICU biobank were obtained from 20 patients with a computed tomography angiograph (CTA) proven PE and compared to 15 COVID-19 controls without a proven PE. Functional procoagulant properties of PBMC were measured using a modified fibrin generation time (MC-FGT) assay. Tissue factor (TF) expression on monocyte subsets were measured by flow cytometry. Additional clinical data were obtained from patient records including end-tidal to arterial carbon dioxide gradient. RESULTS: MC-FGT levels were highest in the samples taken closest to the PE detection, similar to the end-tidal to arterial carbon dioxide gradient (ETCO2 - PaCO2), a measurement to quantify ventilation-perfusion mismatch. In patients without proven PE, peak MC-FGT relates to an increase in end-tidal to arterial carbon dioxide gradient. We identified non-classical, CD16 positive monocytes as the subset with increased TF expression. CONCLUSION: We show that the procoagulant state of PBMC could aid in early detection of PE in COVID-19 ICU patients. Combined with end-tidal to ETCO2 - PaCO2 gradient, these tests could improve early detection of PE on the ICU.</p
Tumor-infiltrating lymphocytes and immune-related adverse events in advanced melanoma
Background: The predictive value of tumor-infiltrating lymphocytes (TILs) in immune-related adverse event (irAE) development remains unknown, although an association between tumor immunogenicity and irAEs has been suggested. We investigated the association between TIL abundance in pretreatment primary and metastasis specimens and the subsequent development of severe irAEs. Patients and methods: We retrospectively identified patients with advanced cutaneous melanoma who received first-line anti-programmed cell death protein 1 (PD-1) with or without anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA-4) from 10 hospitals in the Netherlands. TILs were scored on representative hematoxylin and eosin (H&E) stains of the primary melanoma and pretreatment melanoma metastasis as ‘absent’, ‘nonbrisk’, or ‘brisk’. A univariable logistic regression analysis was carried out to assess the association between the TIL scores and the development of severe irAEs. Fine and Gray subdistribution hazard models were used to estimate the cumulative incidence of severe irAEs. Results: Of the 1346 eligible patients, 536 patients had primary melanoma specimens available, and 613 patients had metastasis specimens available. Severe irAEs occurred in 15% of anti-PD-1-treated patients and 49% of anti-PD-1 + anti-CTLA-4-treated patients. The presence of TILs was not associated with the occurrence of grade ≥3 irAEs in primary melanoma specimens (P = 0.70) nor pretreatment metastasis specimens (P = 0.91). In the univariable analysis, patients with brisk TILs did not have a higher chance of developing severe irAEs compared with patients with absent TILs, for both primary specimen (odds ratio 1.15, 95% confidence interval 0.60-2.18) and metastasis specimen (odds ratio 0.77, 95% confidence interval 0.37-1.59). There was also no significant difference in the lifetime risk or timing of the development of severe irAEs in patients with TILs present compared with patients with TILs absent. Conclusion: There was no association between the TIL scores on H&E-stained slides from the primary melanoma or pretreatment metastasis and the development of grade 3 or higher irAEs. Additionally, no correlation was found between the presence of TILs and the timing of irAEs
A systematic review and comparison of automated tools for quantification of fibrous networks
Fibrous networks are essential structural components of biological and engineered materials. Accordingly, many approaches have been developed to quantify their structural properties, which define their material properties. However, a comprehensive overview and comparison of methods is lacking. Therefore, we systematically searched for automated tools quantifying network characteristics in confocal, stimulated emission depletion (STED) or scanning electron microscopy (SEM) images and compared these tools by applying them to fibrin, a prototypical fibrous network in thrombi. Structural properties of fibrin such as fiber diameter and alignment are clinically relevant, since they influence the risk of thrombosis. Based on a systematic comparison of the automated tools with each other, manual measurements, and simulated networks, we provide guidance to choose appropriate tools for fibrous network quantification depending on imaging modality and structural parameter. These tools are often able to reliably measure relative changes in network characteristics, but absolute numbers should be interpreted with care. Statement of significance: Structural properties of fibrous networks define material properties of many biological and engineered materials. Many methods exist to automatically quantify structural properties, but an overview and comparison is lacking. In this work, we systematically searched for all publicly available automated analysis tools that can quantify structural properties of fibrous networks. Next, we compared them by applying them to microscopy images of fibrin networks. We also benchmarked the automated tools against manual measurements or synthetic images. As a result, we give advice on which automated analysis tools to use for specific structural properties. We anticipate that researchers from a large variety of fields, ranging from thrombosis and hemostasis to cancer research, and materials science, can benefit from our work.</p
Circulating Myeloperoxidase (MPO)-DNA complexes as marker for Neutrophil Extracellular Traps (NETs) levels and the association with cardiovascular risk factors in the general population
Introduction Neutrophil extracellular traps (NETs) are DNA scaffolds enriched with antimicrobial proteins. NETs have been implicated in the development of various diseases, such as cardiovascular disease. Here, we investigate the association of demographic and cardiovascular (CVD) risk factors with NETs in the general population. Material and methods Citrated plasma was collected from 6449 participants, aged ≥55 years, as part of the prospective population-based Rotterdam Study. NETs were quantified by measuring MPODNA complex using an ELISA. We used linear regression to determine the associations between MPO-DNA complex and age, sex, cardio-metabolic risk factors, and plasma markers of inflammation and coagulation. Results MPO-DNA complex levels were weakly associated with age (log difference per 10 year increase: -0.04 mAU/mL, 95% confidence interval [CI] -0.06;-0.02), a history of coronary heart disease (yes versus no: -0.10 mAU/mL, 95% CI -0.17;-0.03), the use of lipid-lowering drugs (yes versus no: -0.06 mAU/mL, 95% CI -0.12;-0.01), and HDL-cholesterol (per mmol/l increase: -0.07 mAU/mL/, 95% CI -0.12;-0.03). Conclusions Older age, a history of coronary heart disease, the use of lipid-lowering drugs and higher HDL-cholesterol are weakly correlated with lower plasma levels of NETs. These findings show that the effect of CVD risk factors on NETs levels in a general population is only small and may not be of clinical relevance. This supports that NETs may play a more important role in an acute phase of disease than in a steady state situation
A systematic review and comparison of automated tools for quantification of fibrous networks
Fibrous networks are essential structural components of biological and engineered materials. Accordingly, many approaches have been developed to quantify their structural properties, which define their material properties. However, a comprehensive overview and comparison of methods is lacking. Therefore, we systematically searched for automated tools quantifying network characteristics in confocal, stimulated emission depletion (STED) or scanning electron microscopy (SEM) images and compared these tools by applying them to fibrin, a prototypical fibrous network in thrombi. Structural properties of fibrin such as fiber diameter and alignment are clinically relevant, since they influence the risk of thrombosis. Based on a systematic comparison of the automated tools with each other, manual measurements, and simulated networks, we provide guidance to choose appropriate tools for fibrous network quantification depending on imaging modality and structural parameter. These tools are often able to reliably measure relative changes in network characteristics, but absolute numbers should be interpreted with care. Statement of significance: Structural properties of fibrous networks define material properties of many biological and engineered materials. Many methods exist to automatically quantify structural properties, but an overview and comparison is lacking. In this work, we systematically searched for all publicly available automated analysis tools that can quantify structural properties of fibrous networks. Next, we compared them by applying them to microscopy images of fibrin networks. We also benchmarked the automated tools against manual measurements or synthetic images. As a result, we give advice on which automated analysis tools to use for specific structural properties. We anticipate that researchers from a large variety of fields, ranging from thrombosis and hemostasis to cancer research, and materials science, can benefit from our work.BN/Timon Idema LabBN/Gijsje Koenderink La
Fibrinolysis detected by thrombelastography in heterotopic, auxiliary liver transplantation:effect of tissue-type plasminogen activator
Orthotopic liver transplantation (OLT) is associated with haemostatic disturbances and a severe bleeding diathesis. Fibrinolytic activity may be increased, especially during the anhepatic phase and after graft-recirculation and this has been mentioned as a possible causative factor in the occurrence of uncontrollable bleeding. However, most studies were based on global assays and could not clarify the origin of the increased fibrinolysis. Recently, a programme of auxiliary liver transplantation (APLT) was started in Rotterdam. APLT is a surgically less traumatic procedure in which no anhepatic phase occurs. We examined fibrinolytic activity in the first 8 cases of APLT by thrombelastography (TEG), and also by measuring plasma levels of tissue-type plasminogen activator activity (t-PA-act) and antigen (t-PA-Ag) and its inhibition (PAI). Intraoperatively, in only two of the eight APLTs, a period of enhanced fibrinolytic activity was observed on TEG-recordings. This could be explained by an increase of t-PA-act (max. 8840 mIU/ml and 3760 mIU/ml) and t-PA-Ag (≥ 60 ng/ml). Both patients had signs of increased bleeding during these periods. Postoperatively in patients with a good graft function PAI levels decreased to normal values, whereas persistently elevated PAI levels (≥ 25 IU/ml) were found in cases with primary non-functioning liver grafts.</p
Fibrinolysis detected by thrombelastography in heterotopic, auxiliary liver transplantation:effect of tissue-type plasminogen activator
Orthotopic liver transplantation (OLT) is associated with haemostatic disturbances and a severe bleeding diathesis. Fibrinolytic activity may be increased, especially during the anhepatic phase and after graft-recirculation and this has been mentioned as a possible causative factor in the occurrence of uncontrollable bleeding. However, most studies were based on global assays and could not clarify the origin of the increased fibrinolysis. Recently, a programme of auxiliary liver transplantation (APLT) was started in Rotterdam. APLT is a surgically less traumatic procedure in which no anhepatic phase occurs. We examined fibrinolytic activity in the first 8 cases of APLT by thrombelastography (TEG), and also by measuring plasma levels of tissue-type plasminogen activator activity (t-PA-act) and antigen (t-PA-Ag) and its inhibition (PAI). Intraoperatively, in only two of the eight APLTs, a period of enhanced fibrinolytic activity was observed on TEG-recordings. This could be explained by an increase of t-PA-act (max. 8840 mIU/ml and 3760 mIU/ml) and t-PA-Ag (≥ 60 ng/ml). Both patients had signs of increased bleeding during these periods. Postoperatively in patients with a good graft function PAI levels decreased to normal values, whereas persistently elevated PAI levels (≥ 25 IU/ml) were found in cases with primary non-functioning liver grafts.</p