51 research outputs found

    Stability of grid amplifiers

    Get PDF
    We present a stability model for quasi-optical grid amplifiers. This model is useful for predicting and suppressing the common-mode oscillations that often occur in amplifier grids. Three stabilization techniques will be discussed. The first technique uses a capacitor to stabilize the grid. The second approach employs resistance to suppress the oscillations. The final technique stabilizes the grid by reducing the on-chip common-mode resistance, allowing greatly increased amplifier efficiencies. Experimental evidence will be presented to confirm the validity of our stability model

    Modelling of quasi-optical arrays

    Get PDF
    A model for analyzing quasi-optical grid amplifiers based on a finite-element electromagnetic simulator is presented. This model is deduced from the simulation of the whole unit cell and takes into account mutual coupling effects. By using this model, the gain of a 10×10 grid amplifier has been accurately predicted. To further test the validity of the model three passive structures with different loads have been fabricated and tested using a new focused-beam network analyzer that we developed

    A 100-element planar Schottky diode grid mixer

    Get PDF
    The authors present a Schottky diode grid mixer suitable for mixing or detecting quasi-optical signals. The mixer is a planar bow-tie grid structure periodically loaded with diodes. A simple transmission line model is used to predict the reflection coefficient of the grid to a normally incident plane wave. The grid mixer power handling and dynamic range scales as the number of devices in the grid. A 10-GHz 100-element grid mixer has shown an improvement in dynamic range of 16.3 to 19.8 dB over an equivalent single-diode mixer. The conversion loss and noise figure of the grid are equal to those of a conventional mixer. The quasi-optical coupling of the input signals makes the grid mixer suitable for millimeter-wave and submillimeter-wave applications by eliminating waveguide sidewall losses and machining difficulties. The planar property of the grid potentially allows thousands of devices to be integrated monolithically

    Failures in power-combining arrays

    Get PDF
    We derive a simple formula for the change in output when a device fails in a power-combining structure with identical matched devices. The loss is written in terms of the scattering coefficient of the failed device and reflection coefficient of an input port in the combining network. We apply this formula to several power combiners, including arrays in free space and enclosed waveguide structures. Our simulations indicate the output power degrades gracefully as devices fail, which is in agreement with previously published results

    A 6.5 GHz-11.5 GHz source using a grid amplifier with a twist reflector

    Get PDF
    The authors have constructed and tested an oscillator using a grid amplifier with external feedback from a twist reflector. The twist reflector serves two functions; it changes the output polarization to match the input, and its position sets the feedback phase. This permits a wider tuning range than has been possible with previous grid oscillators. The source could be continuously tuned from 8.2 GHz to 11.0 GHz by moving the twist reflector. By moving the polarizer and mirror in the twist reflector independently, a 1.8-to-1 frequency range from 6.5 GHz to 11.5 GHz was achieved. The peak effective radiated power was 6.3 W at 9.9 GHz

    Modeling and performance of a 100-element pHEMT grid amplifier

    Get PDF
    A 100-element hybrid grid amplifier has been fabricated, The active devices in the grid are custom-made pseudomorphic high electron mobility transistor (pHEMT) differential-pair chips. We present a model for gain analysis and compare measurements with theory. The grid includes stabilizing resistors in the gate. Measurements show the grid has a peak gain of 10 db when tuned for 10 GHz and a gain of 12 dB when tuned for 9 GHz. The maximum 3-dB bandwidth is 15% at 9 GHz. The minimum noise figure is 3 dB. The maximum saturated output power is 3.7 W, with a peak power-added efficiency of 12%. These results area significant improvement over previous grid amplifiers based on heterojunction bipolar transistors (HBT's)

    A 10-Watt X-Band Grid Oscillator

    Get PDF
    A 100-transistor MESFET grid oscillator has been fabricated that generates an effective radiated power of 660 W at 9.8 GHz and has a directivity of 18.0 dB. This corresponds to a total radiated power of 10.3 W, or 103 mW per device. This is the largest recorded output power for a grid oscillator. The grid drain-source bias voltage is 7.4 V and the total drain current for the grid is 6.0 A, resulting in an overall dc-to-rf efficiency of 23%. The pattern of the SSB noise-to-carrier ratio was measured and found to be essentially independent of the radiation angle. The average SSB noise level was -87 dBc/Hz at an offset of 150 kHz from the carrier. An average improvement in the SSB noise-to-carrier ratio of 5 dB was measured for a 100-transistor grid compared to a 16-transistor gri

    A 100-element HBT grid amplifier

    Get PDF
    A 100-element 10-GHz grid amplifier has been developed. The active devices in the grid are chips with heterojunction-bipolar-transistor (HBT) differential pairs. The metal grid pattern was empirically designed to provide effective coupling between the HBTs and free space. Two independent measurements, one with focusing lenses and the other without, were used to characterize the grid. In each case, the peak gain was 10 dB at 10 GHz with a 3-dB bandwidth of 1 GHz. The input and output return losses were better than 15 dB at 10 GHz. The maximum output power was 450 mW, and the minimum noise figure was 7 dB. By varying the bias, a signal could be amplitude modulated with a modulation index as large as 0.65. Tests show that the grid was quite tolerant of failures-the output power dropped by only 1 dB when 10% of the inputs were detuned. The grid amplifier is a multimode device that amplifies beams of different shapes and angles. Beams with incidence angles up to 30° were amplified with less than a 3-dB drop in gain
    corecore