4 research outputs found

    External validation of NTCP-models for radiation pneumonitis in lung cancer patients treated with chemoradiotherapy

    Get PDF
    PURPOSE: Normal tissue complication probability (NTCP) models can be used to estimate the risk of radiation pneumonitis (RP). The aim of this study was to externally validate the most frequently used prediction models for RP, i.e., the QUANTEC and APPELT models, in a large cohort of lung cancer patients treated with IMRT or VMAT. [1-2] METHODS AND MATERIALS: This prospective cohort study, included lung cancer patients treated between 2013 and 2018. A closed testing procedure was performed to test the need for model updating. To improve model performance, modification or removal of variables was considered. Performance measures included tests for goodness of fit, discrimination, and calibration.RESULTS: In this cohort of 612 patients, the incidence of RP ≥ grade 2 was 14.5%. For the QUANTEC-model, recalibration was recommended which resulted in a revised intercept and adjusted regression coefficient (from 0.126 to 0.224) of the mean lung dose (MLD),. The APPELT-model needed revision including model updating with modification and elimination of variables. After revision, the New RP-model included the following predictors (and regression coefficients): MLD (B = 0.250), age (B = 0.049, and smoking status (B = 0.902). The discrimination of the updated APPELT-model was higher compared to the recalibrated QUANTEC-model (AUC: 0.79 vs. 0.73).CONCLUSIONS: This study demonstrated that both the QUANTEC- and APPELT-model needed revision. Next to changes of the intercept and regression coefficients, the APPELT model improved further by model updating and performed better than the recalibrated QUANTEC model. This New RP-model is widely applicable containing non-tumour site specific variables, which can easily be collected.</p

    Thioguanine is Effective as Maintenance Therapy for Inflammatory Bowel Disease: A Prospective Multicentre Registry Study

    Get PDF
    Background and Aims: Thioguanine is a well-tolerated and effective therapy for inflammatory bowel disease [IBD] patients. Prospective effectiveness data are needed to substantiate the role of thioguanine as a maintenance therapy for IBD. Methods: IBD patients who previously failed azathioprine or mercaptopurine and initiated thioguanine were prospectively followed for 12 months starting when corticosteroid-free clinical remission was achieved (Harvey-Bradshaw Index [HBI] ≤ 4 or Simple Clinical Colitis Activity Index [SCCAI] ≤ 2). The primary endpoint was corticosteroid-free clinical remission throughout 12 months. Loss of clinical remission was defined as SCCAI > 2 or HBI > 4, need of surgery, escalation of therapy, initiation of corticosteroids or study discontinuation. Additional endpoints were adverse events, drug survival, physician global assessment [PGA] and quality of life [QoL]. Results: Sustained corticosteroid-free clinical remission at 3, 6 or 12 months was observed in 75 [69%], 66 [61%] and 49 [45%] of 108 patients, respectively. Thioguanine was continued in 86 patients [80%] for at least 12 months. Loss of response [55%] included escalation to biologicals in 15%, corticosteroids in 10% and surgery in 3%. According to PGA scores, 82% of patients were still in remission after 12 months and QoL scores remained stable. Adverse events leading to discontinuation were reported in 11%, infections in 10%, myelo- and hepatotoxicity each in 6%, and portal hypertension in 1% of patients. Conclusion: Sustained corticosteroid-free clinical remission over 12 months was achieved in 45% of IBD patients on monotherapy with thioguanine. A drug continuation rate of 80%, together with favourable PGA and QoL scores, underlines the tolerability and effectiveness of thioguanine for IBD

    An instrument dedicated for modelling of pulmonary radiotherapy

    No full text
    Background and purpose: Radiotherapy plays a pivotal role in lung cancer treatment. Selection of patients for new (radio)therapeutic options aiming at improving outcomes requires reliable and validated prediction models. We present the implementation of a prospective platform for evaluation and development of lung radiotherapy (proPED-LUNG) as an instrument enabling multidimensional predictive modelling. Materials and methods: ProPED-LUNG was designed to comprise relevant baseline and follow up data of patients receiving pulmonary radiotherapy with curative intent. Patient characteristics, diagnostic and staging information, treatment parameters including full dose-volume-histograms, tumour control, survival, and toxicity are scored. Besides physician-rated data, a range of patient-rated data regarding symptoms and health-related quality-of-life are collected. Results: After 18 months of accrual, 315 patients have been included (accrual rate, 18 per month). Of the first hundred patients included, 70 received conformal (chemo)radiotherapy and 30 underwent stereotactic radiotherapy. Compliance at 3 and 6 months follow-up was 96-100% for patient-rated, and 8194% for physician-rated assessments. For data collection, 0.4 FTE were allocated in a 183 FTE department (0.2%). Conclusions: ProPED-LUNG is feasible with high compliance rates and yields a large amount of high quality prospective disease-related, treatment-related, patient- and physician-rated data which can be used to evaluate new developments in pulmonary radiotherapy. (C) 2015 Elsevier Ireland Ltd. All rights reserved
    corecore