110 research outputs found
Practical Tools to Implement Massive Parallel Pyrosequencing of PCR Products in Next Generation Molecular Diagnostics
Despite improvements in terms of sequence quality and price per basepair, Sanger sequencing remains restricted to screening of individual disease genes. The development of massively parallel sequencing (MPS) technologies heralded an era in which molecular diagnostics for multigenic disorders becomes reality. Here, we outline different PCR amplification based strategies for the screening of a multitude of genes in a patient cohort. We performed a thorough evaluation in terms of set-up, coverage and sequencing variants on the data of 10 GS-FLX experiments (over 200 patients). Crucially, we determined the actual coverage that is required for reliable diagnostic results using MPS, and provide a tool to calculate the number of patients that can be screened in a single run. Finally, we provide an overview of factors contributing to false negative or false positive mutation calls and suggest ways to maximize sensitivity and specificity, both important in a routine setting. By describing practical strategies for screening of multigenic disorders in a multitude of samples and providing answers to questions about minimum required coverage, the number of patients that can be screened in a single run and the factors that may affect sensitivity and specificity we hope to facilitate the implementation of MPS technology in molecular diagnostics
Next Generation Sequencing to Determine the Cystic Fibrosis Mutation Spectrum in Palestinian Population
An extensive molecular analysis of the CF transmembrane regulator (CFTR) gene was performed to establish the CFTR mutation spectrum and frequencies in the Palestinian population, which can be considered as an understudied population. We used a targeted Next Generation Sequencing approach to sequence the entire coding region and the adjacent sequences of the CFTR gene combined with MLPA analysis of 60 unrelated CF patients. Eighteen different CF-causing mutations, including one previously undescribed mutation p.(Gly1265Arg), were identified. The overall detection rate is up to 67%, and when we consider only CF patients with sweat chloride concentrations >70 mEq/L, we even have a pickup rate of 92%. Whereas p.(Phe508del) is the most frequent allele (35% of the positive cases), 3 other mutations c.2988+1Kbdel8.6Kb, c.1393-1G>A, and p.(Gly85Glu) showed frequencies higher than 5% and a total of 9 mutations account for 84% of the mutations. This limited spectrum of CF mutations is in agreement with the homozygous ethnic origin of the Palestinian population. The relative large portion of patients without a mutation is most likely due to clinical misdiagnosis. Our results will be important in the development of an adequate molecular diagnostic test for CF in Palestine
Germline Genetic Findings Which May Impact Therapeutic Decisions in Families with a Presumed Predisposition for Hereditary Breast and Ovarian Cancer
In this study, we aim to gain insight in the germline mutation spectrum of ATM, BARD1, BRIP1, ERCC4, PALB2, RAD51C and RAD51D in breast and ovarian cancer families from Spain. We have selected 180 index cases in whom a germline mutation in BRCA1 and BRCA2 was previously ruled out. The importance of disease-causing variants in these genes lies in the fact that they may have possible therapeutic implications according to clinical guidelines. All variants were assessed by combined annotation dependent depletion (CADD) for scoring their deleteriousness. In addition, we used the cancer genome interpreter to explore the implications of some variants in drug response. Finally, we compiled and evaluated the family history to assess whether carrying a pathogenic mutation was associated with age at diagnosis, tumour diversity of the pedigree and total number of cancer cases in the family. Eight unequivocal pathogenic mutations were found and another fourteen were prioritized as possible causal variants. Some of these molecular results could contribute to cancer diagnosis, treatment selection and prevention. We found a statistically significant association between tumour diversity in the family and carrying a variant with a high score predicting pathogenicity (p = 0.0003)
Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation
Background: Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals.
Methods: We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established.
Results: We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene.
Conclusions: We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD
A high-throughput protocol for mutation scanning of the BRCA1 and BRCA2 genes
Detection of mutations by DNA sequencing can be facilitated by scanning methods to identify amplicons which may have mutations. Current scanning methods used for the detection of germline sequence variants are laborious as they require post-PCR manipulation. High resolution melting (HRM) is a cost-effective rapid screening strategy, which readily detects heterozygous variants by melting curve analysis of PCR products. It is well suited to screening genes such as BRCA1 and BRCA2 as germline pathogenic mutations in these genes are always heterozygous. Assays for the analysis of all coding regions and intron-exon boundaries of BRCA1 and BRCA2 were designed, and optimised. A final set of 94 assays which ran under identical amplification conditions were chosen for BRCA1 (36) and BRCA2 (58). Significant attention was placed on primer design to enable reproducible detection of mutations within the amplicon while minimising unnecessary detection of polymorphisms. Deoxyinosine residues were incorporated into primers that overlay intronic polymorphisms. Multiple 384 well plates were used to facilitate high throughput. 169 BRCA1 and 239 BRCA2 known sequence variants were used to test the amplicons. We also performed an extensive blinded validation of the protocol with 384 separate patient DNAs. All heterozygous variants were detected with the optimised assays. This is the first HRM approach to screen the entire coding region of the BRCA1 and BRCA2 genes using one set of reaction conditions in a multi plate 384 well format using specifically designed primers. The parallel screening of a relatively large number of samples enables better detection of sequence variants. HRM has the advantages of decreasing the necessary sequencing by more than 90%. This markedly reduced cost of sequencing will result in BRCA1 and BRCA2 mutation testing becoming accessible to individuals who currently do not undergo mutation testing because of the significant costs involved
BRCA1/2 mutation screening in high-risk breast/ovarian cancer families and sporadic cancer patient surveilling for hidden high-risk families
Background: The estimated ratio of hereditary breast/ovarian cancer (HBOC) based on family history is 1.5% in Latvia. This is significantly lower than the European average of 5-10%. Molecular markers like mutations and SNPs can help distinguish HBOC patients in the sporadic breast and ovarian cancer group.Methods: 50 patients diagnosed with HBOC in the Latvian Cancer Registry from January 2005 to December 2008 were screened for BRCA1 founder mutation-negatives and subjected to targeted resequencing of BRCA1 and BRCA2 genes. The newly found mutations were screened for in the breast and ovarian cancer group of 1075 patients by Real Time-PCR/HRM analysis and RFLP.Results: Four BRCA2 mutations including three novel BRCA2 frameshift mutations and one previously known BRCA2 frameshift mutation and one BRCA1 splicing mutation were identified. Two of the BRCA2 mutations were found in a group of consecutive breast cancer patients with a frequency of 0.51% and 0.38%.Conclusions: Molecular screening of sequential cancer patients is an important tool to identify HBOC families.publishersversionPeer reviewe
Full-Exon Pyrosequencing Screening of BRCA Germline Mutations in Mexican Women with Inherited Breast and Ovarian Cancer
Hereditary breast cancer comprises 10% of all breast cancers. The most prevalent genes causing this pathology are BRCA1 and BRCA2 (breast cancer early onset 1 and 2), which also predispose to other cancers. Despite the outstanding relevance of genetic screening of BRCA deleterious variants in patients with a history of familial cancer, this practice is not common in Latin American public institutions. In this work we assessed mutations in the entire exonic and splice-site regions of BRCA in 39 patients with breast and ovarian cancer and with familial history of breast cancer or with clinical features suggestive for BRCA mutations by massive parallel pyrosequencing. First we evaluated the method with controls and found 41–485 reads per sequence in BRCA pathogenic mutations. Negative controls did not show deleterious variants, confirming the suitability of the approach. In patients diagnosed with cancer we found 4 novel deleterious mutations (c.2805_2808delAGAT and c.3124_3133delAGCAATATTA in BRCA1; c.2639_2640delTG and c.5114_5117delTAAA in BRCA2). The prevalence of BRCA mutations in these patients was 10.2%. Moreover, we discovered 16 variants with unknown clinical significance (11 in exons and 5 in introns); 4 were predicted as possibly pathogenic by in silico analyses, and 3 have not been described previously. This study illustrates how massive pyrosequencing technology can be applied to screen for BRCA mutations in the whole exonic and splice regions in patients with suspected BRCA-related cancers. This is the first effort to analyse the mutational status of BRCA genes on a Mexican-mestizo population by means of pyrosequencing
Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development
Purpose: Disorders or differences of sex development (DSDs) are rare congenital conditions characterized by atypical sex development. Despite advances in genomic technologies, the molecular cause remains unknown in 50% of cases.
Methods: Homozygosity mapping and whole-exome sequencing revealed an ESR2 variant in an individual with syndromic 46, XY DSD. Additional cases with 46, XY DSD underwent whole-exome sequencing and targeted next-generation sequencing of ESR2. Functional characterization of the identified variants included luciferase assays and protein structure analysis. Gonadal ESR2 expression was assessed in human embryonic data sets and immunostaining of estrogen receptor-beta (ER-beta) was performed in an 8-week-old human male embryo.
Results: We identified a homozygous ESR2 variant, c.541_543del p. (Asn181del), located in the highly conserved DNA-binding domain of ER-beta, in an individual with syndromic 46, XY DSD. Two additional heterozygous missense variants, c.251G>T p.(Gly84Val) and c.1277T>G p.(Leu426Arg), located in the N-terminus and the ligand-binding domain of ER-beta, were found in unrelated, nonsyndromic 46, XY DSD cases. Significantly increased transcriptional activation and an impact on protein conformation were shown for the p.(Asn181del) and p.(Leu426Arg) variants. Testicular ESR2 expression was previously documented and ER-beta immunostaining was positive in the developing intestine and eyes.
Conclusion: Our study supports a role for ESR2 as a novel candidate gene for 46, XY DSD
ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants
PURPOSE: ABCA4-associated disease, a recessive retinal dystrophy, is hallmarked by a large proportion of patients with only one pathogenic ABCA4 variant, suggestive for missing heritability. METHODS: By locus-specific analysis of ABCA4, combined with extensive functional studies, we aimed to unravel the missing alleles in a cohort of 67 patients (p), with one (p = 64) or no (p = 3) identified coding pathogenic variants of ABCA4. RESULTS: We identified eight pathogenic (deep-)intronic ABCA4 splice variants, of which five are novel and six structural variants, four of which are novel, including two duplications. Together, these variants account for the missing alleles in 40.3% of patients. Furthermore, two novel variants with a putative cis-regulatory effect were identified. The common hypomorphic variant c.5603A>T p.(Asn1868Ile) was found as a candidate second allele in 43.3% of patients. Overall, we have elucidated the missing heritability in 83.6% of our cohort. In addition, we successfully rescued three deep-intronic variants using antisense oligonucleotide (AON)-mediated treatment in HEK 293-T cells and in patient-derived fibroblast cells. CONCLUSION: Noncoding pathogenic variants, novel structural variants, and a common hypomorphic allele of the ABCA4 gene explain the majority of unsolved cases with ABCA4-associated disease, rendering this retinopathy a model for missing heritability in autosomal recessive disorders
- …