199 research outputs found

    Exact Solution of a Jamming Transition: Closed Equations for a Bootstrap Percolation Problem

    Full text link
    Jamming, or dynamical arrest, is a transition at which many particles stop moving in a collective manner. In nature it is brought about by, for example, increasing the packing density, changing the interactions between particles, or otherwise restricting the local motion of the elements of the system. The onset of collectivity occurs because, when one particle is blocked, it may lead to the blocking of a neighbor. That particle may then block one of its neighbors, these effects propagating across some typical domain of size named the dynamical correlation length. When this length diverges, the system becomes immobile. Even where it is finite but large the dynamics is dramatically slowed. Such phenomena lead to glasses, gels, and other very long-lived nonequilibrium solids. The bootstrap percolation models are the simplest examples describing these spatio-temporal correlations. We have been able to solve one such model in two dimensions exactly, exhibiting the precise evolution of the jamming correlations on approach to arrest. We believe that the nature of these correlations and the method we devise to solve the problem are quite general. Both should be of considerable help in further developing this field.Comment: 17 pages, 4 figure

    Performance of microcellular mobile radio in a cochannel interference, natural, and man-made noise environment

    Full text link

    Search for light massive gauge bosons as an explanation of the (g2)μ(g-2)_\mu anomaly at MAMI

    Get PDF
    A massive, but light abelian U(1) gauge boson is a well motivated possible signature of physics beyond the Standard Model of particle physics. In this paper, the search for the signal of such a U(1) gauge boson in electron-positron pair-production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron (MAMI) is described. Exclusion limits in the mass range of 40 MeV up to 300 MeV with a sensitivity in the mixing parameter of down to ϵ2=8×107\epsilon^2 = 8\times 10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge boson.Comment: 4 pages, 3 figure

    Search for radiative pumping lines of OH masers: I. The 34.6um absorption line towards 1612 MHz OH maser sources

    Full text link
    The 1612 MHz hydroxyl maser in circumstellar envelopes has long been thought to be pumped by 34.6um photons. Only recently, the Infrared Space Observatory has made possible spectroscopic observations which enable the direct confirmation of this pumping mechanism in a few cases. To look for the presence of this pumping line, we have searched the Infrared Space Observatory Data Archive and found 178 spectra with data around 34.6um for 87 galactic 1612MHz masers. The analysis performed showed that the noise level and the spectral resolution of the spectra are the most important factors affecting the detection of the 34.6um absorption line. Only 5 objects from the sample (3 red supergiants and 2 galactic center sources) are found to show clear 34.6um absorption (all of them already known) while two additional objects only tentatively show this line. The 3 supergiants show similar pump rates and their masers might be purely radiatively pumped. The pump rates of OH masers in late type stars are found to be about 0.05, only 1/5 of the theoretical value of 0.25 derived by Elitzur (1992). We have also found 16 maser sources which, according to the analysis assuming Elitzur's pump rate, should show the 34.6 μ\mum absorption line but do not. These non-detections can be tentatively explained by far-infrared photon pumping, clumpy nature of the OH masing region or a limb-filling emission effect in the OH shell.Comment: 11 pages, 8 figures, 3 table

    Rotational averaging-out gravitational sedimentation of colloidal dispersions and phenomena

    Full text link
    We report on the differences between colloidal systems left to evolve in the earth's gravitational field and the same systems for which a slow continuous rotation averaged out the effects of particle sedimentation on a distance scale small compared to the particle size. Several systems of micron-sized colloidal particles were studied: a hard sphere fluid, colloids interacting via long-range electrostatic repulsions above the freezing volume fraction, an oppositely charged colloidal system close to either gelation and/or crystallization, colloids with a competing short-range depletion attraction and a long-range electrostatic repulsion, colloidal dipolar chains, and colloidal gold platelets under conditions where they formed stacks. Important differences in the structure formation were observed between the experiments where the particles were allowed to sediment and those where sedimentation was averaged out. For instance, in the case of colloids interacting via long-range electrostatic repulsions, an unusual sequence of dilute-Fluid/dilute-Crystal/dense-Fluid/dense-Crystal phases was observed throughout the suspension under the effect of gravity, related to the volume fraction dependence of the colloidal interactions, whereas the system stayed homogeneously crystallized with rotation. For the oppositely charged colloids, a gel-like structure was found to collapse under the influence of gravity with a few crystalline layers grown on top of the sediment, whereas when the colloidal sedimentation was averaged out, the gel completely transformed into crystallites that were oriented randomly throughout the sample. Rotational averaging out gravitational sedimentation is an effective and cheap way to estimate the importance of gravity for colloidal self-assembly processes.Comment: 13 pages, 13 figure

    Extragalactic Results from the Infrared Space Observatory

    Full text link
    More than a decade ago the IRAS satellite opened the realm of external galaxies for studies in the 10 to 100 micron band and discovered emission from tens of thousands of normal and active galaxies. With the 1995-1998 mission of the Infrared Space Observatory the next major steps in extragalactic infrared astronomy became possible: detailed imaging, spectroscopy and spectro-photometry of many galaxies detected by IRAS, as well as deep surveys in the mid- and far- IR. The spectroscopic data reveal a wealth of detail about the nature of the energy source(s) and about the physical conditions in galaxies. ISO's surveys for the first time explore the infrared emission of distant, high-redshift galaxies. ISO's main theme in extragalactic astronomy is the role of star formation in the activity and evolution of galaxies.Comment: 106 pages, including 17 figures. Ann.Rev.Astron.Astrophys. (in press), a gzip'd pdf file (667kB) is also available at http://www.mpe.mpg.de/www_ir/preprint/annrev2000.pdf.g

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Obscured Activity: AGN, Quasars, Starbursts and ULIGs observed by the Infrared Space Observatory

    Full text link
    Some of the most active galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS), has enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star-formation as well as those containing a dominant active galactic nucleus (AGN). Mid infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid and far infrared. This was particularly useful since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry also revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based upon ISO data spanning the full range of luminosity and type of active galaxies.Comment: Accepted for publication in 'ISO science legacy - a compact review of ISO major achievements', Space Science Reviews - dedicated ISO issue. To be published by Springer in 2005. 62 pages (low resolution figures version). Higher resolution PDFs available from http://users.physics.uoc.gr/~vassilis/papers/VermaA.pdf or http://www.iso.vilspa.esa.es/science/SSR/Verma.pd

    Novel Protocol for the Chemical Synthesis of Crustacean Hyperglycemic Hormone Analogues — An Efficient Experimental Tool for Studying Their Functions

    Get PDF
    The crustacean Hyperglycemic Hormone (cHH) is present in many decapods in different isoforms, whose specific biological functions are still poorly understood. Here we report on the first chemical synthesis of three distinct isoforms of the cHH of Astacus leptodactylus carried out by solid phase peptide synthesis coupled to native chemical ligation. The synthetic 72 amino acid long peptide amides, containing L- or D-Phe3 and (Glp1, D-Phe3) were tested for their biological activity by means of homologous in vivo bioassays. The hyperglycemic activity of the D-isoforms was significantly higher than that of the L-isoform, while the presence of the N-terminal Glp residue had no influence on the peptide activity. The results show that the presence of D-Phe3 modifies the cHH functionality, contributing to the diversification of the hormone pool

    The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during<i> Caenorhabditis elegans</i> Meiosis

    Get PDF
    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis
    corecore