2 research outputs found

    Necrotising enterocolitis and mortality in preterm infants after introduction of probiotics: A quasi-experimental study

    Get PDF
    Evidence on the clinical effectiveness of probiotics in the prevention of necrotising enterocolitis (NEC) in preterm infants is conflicting and cohort studies lacked adjustment for time trend and feeding type. This study investigated the association between the introduction of routine probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum; Infloran ®) on the primary outcome 'NEC or death'. Preterm infants (gestational age <32 weeks or birth weight <1500 gram) admitted before (Jan 2008-Sep 2012; n = 1288) and after (Oct 2012-Dec 2014; n = 673) introduction of probiotics were compared. Interrupted time series logistic regression models were adjusted for confounders, effect modification by feeding type, seasonality and underlying temporal trends. Unadjusted and adjusted analyses showed no difference in 'NEC or death' between the two periods. The overall incidence of NEC declined from 7.8% to 5.1% (OR 0.63, 95% CI 0.42-0.93, p = 0.02), which was not statistically significant in the adjusted models. Introduction of probiotics was associated with a reduced adjusted odds for 'NEC or sepsis or death' in exclusively breastmilk-fed infants (OR 0.43, 95% CI 0.21-0.93, p = 0.03) only. We conclude that introduction of probiotics was not associated with a reduction in 'NEC or death' and that type of feeding seems to modify the effects of probiotics

    Novel transcutaneous sensor combining optical tcPO2 and electrochemical tcPCO2 monitoring with reflectance pulse oximetry

    Get PDF
    This study investigated the accuracy, drift, and clinical usefulness of a new optical transcutaneous oxygen tension (tcPO2) measuring technique, combined with a conventional electrochemical transcutaneous carbon dioxide (tcPCO2) measurement and reflectance pulse oximetry in the novel transcutaneous OxiVenT™ Sensor. In vitro gas studies were performed to measure accuracy and drift of tcPO2 and tcPCO2. Clinical usefulness for tcPO2 and tcPCO2 monitoring was assessed in neonates. In healthy adult volunteers, measured oxygen saturation values (SpO2) were compared with arterially sampled oxygen saturation values (SaO2) during controlled hypoxemia. In vitro correlation and agreement with gas mixtures of tcPO2 (r = 0.999, bias 3.0 mm Hg, limits of agreement − 6.6 to 4.9 mm Hg) and tcPCO2 (r = 0.999, bias 0.8 mm Hg, limits of agreement − 0.7 to 2.2 mm Hg) were excellent. In vitro drift was negligible for tcPO2 (0.30 (0.63 SD) mm Hg/24 h) and highly acceptable for tcPCO2 (− 2.53 (1.04 SD) mm Hg/12 h). Clinical use in neonates showed good usability and feasibility. SpO2-SaO2 correlation (r = 0.979) and agreement (bias 0.13%, limits of agreement − 3.95 to 4.21%) in healthy adult volunteers were excellent. The investigated combined tcPO2, tcPCO2, and SpO2 sensor with a new oxygen fluorescence quenching technique is clinically usable and provides good overall accuracy and negligible tcPO2 drift. Accurate and low-drift tcPO2 monitoring offers improved measurement validity for long-term monitoring of blood and tissue oxygenation. [Figure not available: see fulltext.]
    corecore