12,390 research outputs found

    Synthesis and viscosity behavior of poly(γ-p-biphenylmethyl-L-glutamate) in benzene/dichloroacetic acid mixtures, a comparison with poly(γ-benzyl-L-glutamate)

    Get PDF
    The synthesis of poly(γ-p-biphenylmethyl-L-glutamate), PBPLG, (poly{L-imino-1-[2-(4-biphenylylmethoxycarbonyl)ethyl]-2-oxoethylene}), (1d) is described. The viscosity behavior of this polymer in benzene/dichloroacetic acid mixtures (c=0,2.10 -3 - 1,4.10 -3 g/cm3) at 25°CC is investigated. The results are compared with measurements on poly(γ-benzyl-L-glutamate), PBLG, (poly[L-imino-1-(2-benzyloxycarbonylethyl)-2-oxoethylene]), (1c) under the same conditions. A transition from a rigid hydrogen bonded helix to a random solvated coil occurs in two stages for both: PBPLG (first stage 0-55%, second stage 55-100% dichloroacetic acid) and PBLG (first stage 0-70%, second stage 70-100% dichloroacetic acid). \ud Therefore, the introduction of a p-phenyl substituent in PBLG leads to a less stable helix in benzene/dichloroacetic acid mixtures. \ud The stability and viscosity behavior of PBLG in benzene/dichloroacetic acid mixtures (c=0,2.10 - 3 - 1,4.10 - 3g/cm3) is quite similar to the behavior of PBLG in m-cresol/dichloroacetic acid mixtures (c=1,0.10 - 3 - 4,0.10 - 3 g/cm3)

    Speed limits for quantum gates in multi-qubit systems

    Full text link
    We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of qubits. We find in particular that simple methods for implementing two-qubit gates generally provide the fastest possible implementations of these gates. We also find that the three-qubit Toffoli gate time varies greatly depending on the type of interactions and the system's geometry, taking only slightly longer than a two-qubit controlled-NOT (CNOT) gate for a triangle geometry. The speed limit for quantum-state transfer across a qubit chain is set by the maximum spin-wave speed in the chain.Comment: 7 pages (two-column), 2 figures, 2 table

    Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices

    Full text link
    Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 10 6-10 8. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 10 7 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RM

    Metal-catalyst-free growth of carbon nanotubes and their application in field-effect transistors

    Full text link
    The metal-catalyst-free growth of carbon nanotubes (CNTs) using chemical vapor deposition and the application in field-effect transistors (FETs) is demonstrated. The CNT growth process used a 3-nm-thick Ge layer on SiO2 that was subsequently annealed to produce Ge nanoparticles. Raman measurements show the presence of radial breathing mode peaks and the absence of the disorder induced D-band, indicating single walled CNTs with a low defect density. The synthesized CNTs are used to fabricate CNTFETs and the best device has a state-of-the-art on/off current ratio of 3×108 and a steep sub-threshold slope of 110 mV/dec

    Growth of Carbon Nanotubes on HfO2 towards Highly Sensitive Nano-Sensors

    Full text link
    Carbon nanotube (CNT) growth on HfO2 is reported for the first time. The process uses a combination of Ge and Fe nanoparticles and achieves an increase in CNT density from 0.15 to 6.2 mm length/mm2 compared with Fe nanoparticles alone. The synthesized CNTs are assessed by the fabrication of back-gate CNT field-effect transistors with Al source/drain contacts for nano-sensor applications. The devices exhibit excellent p-type behavior with an Ion=Ioff ratio of 105 and a steep sub-threshold slope of 130 mV/dec

    Partial-measurement back-action and non-classical weak values in a superconducting circuit

    Get PDF
    We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit back-action is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a non-classical weak value and the violation of a Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures

    Interrelation of work function and surface stability: the case of BaAl4

    Full text link
    The relationship between the work function (Phi) and the surface stability of compounds is, to our knowledge, unknown, but very important for applications such as organic light-emitting diodes. This relation is studied using first-principles calculations on various surfaces of BaAl4. The most stable surface [Ba terminated (001)] has the lowest Phi (1.95 eV), which is lower than that of any elemental metal including Ba. Adding barium to this surface neither increases its stability nor lowers its work function. BaAl4 is also strongly bound. These results run counter to the common perception that stability and a low Phi are incompatible. Furthermore, a large anisotropy and a stable low-work-function surface are predicted for intermetallic compounds with polar surfaces.Comment: 4 pages, 5 figures, to be published in Chem. Ma

    Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

    Full text link
    We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we recently proposed and demonstrated, consists of driving two transversely-coupled quantum bits (qubits) with a driving field that is resonant with one of the two qubits. For specific relative amplitudes and phases of the driving field felt by the two qubits, one of the two transitions in the degenerate pair is darkened, or in other words, becomes forbidden by effective selection rules. At these driving conditions, the evolution of the two-qubit state realizes a CNOT gate. The gate speed is found to be limited only by the coupling energy J, which is the fundamental speed limit for any entangling gate. Numerical simulations show that at gate speeds corresponding to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and increases further for lower gate speeds. In addition, the effect of higher-lying energy levels and weak anharmonicity is studied, as well as the scalability of the method to systems of multiple qubits. We conclude that in all these respects this method is competitive with existing schemes for creating entanglement, with the added advantages of being applicable for qubits operating at fixed frequencies (either by design or for exploitation of coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure

    Time-dependent Nonlinear Optical Susceptibility of an Out-of-Equilibrium Soft Material

    Full text link
    We investigate the time-dependent nonlinear optical absorption of a clay dispersion (Laponite) in organic dye (Rhodamine B) water solution displaying liquid-arrested state transition. Specifically, we determine the characteristic time τD\tau_D of the nonlinear susceptibility build-up due as to the Soret effect. By comparing τD\tau_D with the relaxation time provided by standard dynamic light scattering measurements we report on the decoupling of the two collective diffusion times at the two very different length scales during the aging of the out-of-equilibrium system. With this demonstration experiment we also show the potentiality of nonlinear optics measurements in the study of the late stage of arrest in soft materials

    H-theorem for classical matter around a black hole

    Get PDF
    We propose a classical solution for the kinetic description of matter falling into a black hole, which permits to evaluate both the kinetic entropy and the entropy production rate of classical infalling matter at the event horizon. The formulation is based on a relativistic kinetic description for classical particles in the presence of an event horizon. An H-theorem is established which holds for arbitrary models of black holes and is valid also in the presence of contracting event horizons
    corecore