4 research outputs found

    Smarter Vaccine Design Will Circumvent Regulatory T Cell-Mediated Evasion in Chronic HIV and HCV Infection

    Get PDF
    Despite years of research, vaccines against HIV and HCV are not yet available, due largely to effective viral immunoevasive mechanisms. A novel escape mechanism observed in viruses that cause chronic infection is suppression of viral-specific effector CD4(+) and CD8(+) T cells by stimulating regulatory T cells (Tregs) educated on host sequences during tolerance induction. Viral class II MHC epitopes that share a T cell receptor (TCR)-face with host epitopes may activate Tregs capable of suppressing protective responses. We designed an immunoinformatic algorithm, JanusMatrix, to identify such epitopes and discovered that among human-host viruses, chronic viruses appear more human-like than viruses that cause acute infection. Furthermore, an HCV epitope that activates Tregs in chronically infected patients, but not clearers, shares a TCR-face with numerous human sequences. To boost weak CD4(+) T cell responses associated with persistent infection, vaccines for HIV and HCV must circumvent potential Treg activation that can handicap efficacy. Epitope-driven approaches to vaccine design that involve careful consideration of the T cell subsets primed during immunization will advance HIV and HCV vaccine development

    Quantifying the Persistence of Vaccine-Related T Cell Epitopes in Circulating Swine Influenza A Strains from 2013-2017

    Get PDF
    When swine flu vaccines and circulating influenza A virus (IAV) strains are poorly matched, vaccine-induced antibodies may not protect from infection. Highly conserved T cell epitopes may, however, have a disease-mitigating effect. The degree of T cell epitope conservation among circulating strains and vaccine strains can vary, which may also explain differences in vaccine efficacy. Here, we evaluate a previously developed conserved T cell epitope-based vaccine and determine the persistence of T cell epitope conservation over time. We used a pair-wise homology score to define the conservation between the vaccine’s swine leukocyte antigen (SLA) class I and II-restricted epitopes and T cell epitopes found in 1272 swine IAV strains sequenced between 2013 and 2017. Twenty-four of the 48 total T cell epitopes included in the epitope-based vaccine were highly conserved and found in >1000 circulating swine IAV strains over the 5-year period. In contrast, commercial swine IAV vaccines developed in 2013 exhibited a declining conservation with the circulating IAV strains over the same 5-year period. Conserved T cell epitope vaccines may be a useful adjunct for commercial swine flu vaccines and to improve protection against influenza when antibodies are not cross-reactive

    Development of highly stable and de-immunized versions of recombinant alpha interferon: promising candidates for the treatment of chronic and emerging viral diseases

    No full text
    Human interferon alpha (hIFN-α) administration constitutes the current FDA approved therapy for chronic Hepatitis B and C virus infections. Additionally, hIFN-α treatment efficacy was recently demonstrated in patients with COVID-19. Thus, hIFN-α constitutes a therapeutic alternative for those countries where vaccination is inaccessible and for people who did not respond effectively to vaccination. However, hIFN-α2b exhibits a short plasma half-life resulting in the occurrence of severe side effects. To optimize the cytokine's pharmacokinetic profile, we developed a hyperglycosylated IFN, referred to as GMOP-IFN. Given the significant number of reports showing neutralizing antibodies (NAb) formation after hIFN-α administration, here we applied the DeFT (De-immunization of Functional Therapeutics) approach to develop functional, de-immunized versions of GMOP-IFN. Two GMOP-IFN variants exhibited significantly reduced ex vivo immunogenicity and null antiproliferative activity, while preserving antiviral function. The results obtained in this work indicate that the new de-immunized GMOP-IFN variants constitute promising candidates for antiviral therapy.Fil: Giorgetti, Sofia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Cultivos Celulares; ArgentinaFil: Etcheverrigaray, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Cultivos Celulares; ArgentinaFil: Terry, Frances. Epivax Incorporated; Estados UnidosFil: Martin, William. Epivax Incorporated; Estados UnidosFil: De Groot, Anne Searls. Epivax Incorporated; Estados Unidos. University Of Rhode Island; Estados UnidosFil: Ceaglio, Natalia Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Cultivos Celulares; ArgentinaFil: Oggero Eberhardt, Marcos Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Cultivos Celulares; ArgentinaFil: Mufarrege, Eduardo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Tecnología Biológica; Argentin
    corecore