2,473 research outputs found
New insights into crustal structure, Cenozoic magmatism, CO2 degassing and seismogenesis in the southern Apennines and Irpinia region from local earthquake tomography
We present high-resolution Vp and Vp/Vs models of the southern Apennines (Italy) computed using local earthquakes recorded from 2006 to 2011 with a graded inversion scheme that progressively resolves the crustal structure, from the large scale of the Apennines belt to the local scale of the normal-fault system. High-Vp bodies defined in the upper and mid crust under the external Apennines are interpreted as extensive mafic intrusions revealing anorogenic magmatism episodes that broadened on the Adriatic domain during Paleogene. Under the mountain belt, a low-Vp region, annular to the Neapolitan volcanic district, indicates the existence of a thermal/fluid anomaly in the mid crust, coinciding with a shallow Moho and diffuse degassing of deeply derived CO2. In the belt axial zone, low Vp/Vs gas-pressurized rock volumes under the Apulian carbonates correlate to high heat flow, strong CO2-dominated gas emissions of mantle origin and shallow carbonate reservoirs with pressurized CO2 gas caps. We hypothesize that the pressurized fluid volumes located at the base of the active fault system influence the rupture process of large normal-faulting earthquakes, like the 1980 Mw6.9 Irpinia event, and that major asperities are confined within the high-Vp Apulian carbonates. This study confirms once more that pre-existing structures of the Pliocene Apulian belt controlled the rupture propagation during the Irpinia earthquake. The main shock broke a 30 km long, NE-dipping seismogenic structure, whereas delayed ruptures (both the 20 s and the 40 s sub-events) developed on antithetic faults, reactivating thrust faults located at the eastern edge of the Apulian belt
Passive seismology in southern Italy: the SAPTEX array
Abstract
In this paper we describe the Southern APennines Tomography EXperiment (SAPTEX) temporary array deployed in southern Italy from June 2001 to
December 2003. Five to twelve three-components seismic stations, all equipped with RefTek 72A07 digitizers in continuous mode recording and Lennartz
3D/5s sensors, were operating in the region during the three-year project. Many local, regional and teleseismic events have been recorded at 26 different
recording sites, providing an invaluable data set for high-resolution seismological studies. Moreover, by the second half of 2002, two stations were
installed in the Aeolian Islands with the main objective to record and better constrain the spatial distribution of the deep seismicity of the southern
Tyrrhenian subduction zone. The preliminary analysis of the waveforms collected in the first two years includes phase identification and body wave
arrival time estimation, local earthquakes (re)location and focal mechanisms computation, P -wave traveltime residuals, and resolution of crustal and upper
mantle structure derived by teleseismic ray sampling
The 2013–2018 matese and beneventano seismic sequences (Central–Southern apennines). New constraints on the hypocentral depth determination
The Matese and Beneventano areas coincide with the transition from the central to the southern Apennines and are characterized by both SW-and NE-dipping normal faulting seismogenic structures, responsible for the large historical earthquakes. We studied the Matese and Beneventano seismicity by means of high-precision locations of earthquakes spanning from 29 December 2013 to 4 September 2018. Events were located by using all of the available data from temporary and permanent stations in the area and a 1D computed velocity model, inverting the dataset with the Velest code. For events M > 2.8 we used P-and S-waves arrival times of the strong motion stations located in the study area. A constant value of 1.83 for Vp/Vs was computed with a modified Wadati method. The dataset consists of 2378 earthquakes, 18,715 P-and 12,295 S-wave arrival times. We computed 55 new fault plane solutions. The mechanisms show predominantly normal fault movements, with T-axis trends oriented NE–SW. Only relatively small E–W trending clusters in the eastern peripheral zones of the Apenninic belt show right-lateral strike-slip kinematics similar to that observed in the Potenza (1990–1991) and Molise (2002 and 2018) sequences. These belong to transfer zones associated with differential slab retreat of the Adriatic plate subduction beneath the Apennines. The Matese sequence (December 2013–February 2014; main shock Mw 5.0) is the most relevant part of our dataset. Hypocentral depths along the axis of the Apenninic belt are in agreement with previous seismological studies that place most of the earthquakes in the brittle upper crust. We confirm a general deepening of seismicity moving from west to the east along the Apennines. Seismicity depth is controlled by heat-flow, which is lower in the eastern side, thus causing a deeper brittle–ductile transition
Signals of CP Violation Beyond the MSSM in Higgs and Flavor Physics
We study an extension of the Higgs sector of the Minimal Supersymmetric
Standard Model (MSSM), considering the effects of new degrees of freedom at the
TeV scale, and allowing for sources of CP violation beyond the MSSM (BMSSM). We
analyze the impact of the BMSSM sources of CP violation on the Higgs collider
phenomenology and on low energy flavor and CP violating observables. We
identify distinct Higgs collider signatures that cannot be realized, either in
the case without CP violating phases or in the CP violating MSSM, and
investigate the prospects to probe them at the Tevatron and the LHC. The most
striking benchmark scenario has three neutral Higgs bosons that all decay
dominantly into W boson pairs and that are well within the reach of the 7 TeV
LHC run. On the other hand, we also present scenarios with three Higgs bosons
that have masses M_Hi > 150 GeV and decay dominantly into b bbar. Such
scenarios are much more challenging to probe and can even lie completely
outside the reach of the 7 TeV LHC run. We explore complementary scenarios with
standard MSSM Higgs signals that allow to accommodate a sizable B_s mixing
phase as indicated by D0, as well as the excess in B_s --> mu+ mu- candidates
recently reported by CDF. We find that, in contrast to the MSSM, a minimal
flavor violating soft sector is sufficient to generate significant corrections
to CP violating observables in meson mixing, compatible with EDM constraints.
In particular, a sizable B_s mixing phase, S_psiphi < 0.4, can be achieved for
specific regions of parameter space. Such a large B_s mixing phase would
unambiguously imply a sizable suppression of S_psiKs with respect to the SM
prediction and a BR(B_s --> mu+ mu-) close to the 95% C.L. upper bound reported
by CDF.Comment: 58 pages, 15 figures, 2 tables, v2 matches published versio
Heterogeneities along the 2009 L’Aquila normal fault inferred by the b-value distribution
In this study we map the distribution of the b-value of the Gutenberg-Richter law—as well as complementary seismicity parameters—along the fault responsible for the 2009 MW 6.1 L'Aquila earthquake. We perform the calculations for two independent aftershock sub-catalogs, before and after a stable magnitude of completeness is reached. We find a substantial spatial variability of the b-values, which range from 0.6 to 1.3 over the fault plane. The comparison between the spatial distribution of the b-values and the main-shock slip pattern shows that the largest slip occurs in normal-to-high b-values portion of the fault plane, while low b-value is observed close to the main-shock nucleation. No substantial differences are found in the b-value computed before and after the main-shock struck in the small region of the fault plane populated by foreshocks
Flank sliding: A valve and a sentinel for paroxysmal eruptions and magma ascent at Mount Etna, Italy
Rising magma, dike intrusions, and flank collapse are observed at many volcanoes worldwide, but how they interact is still poorly documented. Extensive synthetic aperture radar interferometry and continuous global positioning system observations captured a sharp dike intrusion at Mount Etna, Italy, during the 2018 paroxysm that triggered a vigorous seaward sliding of the eastern flank connected with brittle failure and deep magmatic resourcing. We propose a feedback process between flank acceleration and magma intrusion that derives from the interaction between the long- and short-term deformation of the volcano. The flank sliding acts as a valve that modulates the emplacement and eruption of magma within the shallow system. Rapid flank acceleration could potentially evolve into sudden collapses and seismic release at shallow depth. In turn, flank slip events could act as a sentinel for changes in magma depth and paroxysmal eruptions at Mount Etna
From 3D to 4D passive seismic tomography: The sub-surface structure imaging of the Val d’Agri region, southern Italy
Local earthquakes (passive seismic) tomography (LET) is a well established tool for the imaging of the sub-surface structure. Alternative to active seismics, the main advantages of using natural sources are the better sounding in deeper portions of the upper crust, the relatively low cost, and the direct availability of S-waves. The main drawback is the achievable model resolution, which is limited by the density of the seismic network and the distribution of elastic sources, rather than the elastic wave frequency. Recently, 4D variations (in space and time) of velocity anomalies have been recognized in active volcanoes (Patanè et al., 2006) and normal faulting systems and ascribed to the medium response to transient geological processes, like dyke intrusions or fluid pressure increase on fault planes. In this paper we show how LET contributes to the imaging of the upper crust in a very attractive region like the Val d’Agri in southern Italy, which hosts both significant oil fields and seismogenic structures. We show that LET allows to improve the definition of the crust structure, at depths larger than those sampled by conventional seismic profiles, and detect the space-time dependency of elastic properties in response to local variations of fluid pressur
Receiver Function Analysis at Stromboli Volcano (Italy)
This study focuses on constraining the crust and upper mantle discontinuities at Stromboli
volcano by applying the receiver function (RF) analysis. This technique utilizes
the waveforms of P-SV conversions generated by discontinuities to infer the structure
beneath the seismic stations. RFs have been obtained by deconvolving the vertical
component of teleseismic P-wave records from the corresponding rotate horizontal
components applying the Multi-Taper Spectral Correlation technique. For this study
the seismograms of about 125 teleseismic earthquakes (M greater than 6.0), recorded
between 2004 and 2006 at 13 broad-band seismic stations deployed by the INGV, have
been considered. A preliminar characterization of the structure beneath the stations has
been inferred from the stacking of teleseismic Ps converted waves and multiply converted
waves at the seismic interface. The analysis, at frequency of 1 and 2 Hz, show
a horizontal seismic discontinuity at an average depth of about 17 km and a Vp/Vs
ratio lower than 1.73. This discontinuity explains the positive pulses about 1.9 s and
7.5 s after the direct P arrival. These pulses can be interpreted as Ps and PpPs converted
phases, respectively. The depth of this discontinuity is in agreement with the
Moho-depth obtained in independent studies
Automated detection of lung nodules in low-dose computed tomography
A computer-aided detection (CAD) system for the identification of pulmonary
nodules in low-dose multi-detector computed-tomography (CT) images has been
developed in the framework of the MAGIC-5 Italian project. One of the main
goals of this project is to build a distributed database of lung CT scans in
order to enable automated image analysis through a data and cpu GRID
infrastructure. The basic modules of our lung-CAD system, consisting in a 3D
dot-enhancement filter for nodule detection and a neural classifier for
false-positive finding reduction, are described. The system was designed and
tested for both internal and sub-pleural nodules. The database used in this
study consists of 17 low-dose CT scans reconstructed with thin slice thickness
(~300 slices/scan). The preliminary results are shown in terms of the FROC
analysis reporting a good sensitivity (85% range) for both internal and
sub-pleural nodules at an acceptable level of false positive findings (1-9
FP/scan); the sensitivity value remains very high (75% range) even at 1-6
FP/scanComment: 4 pages, 2 figures: Proceedings of the Computer Assisted Radiology
and Surgery, 21th International Congress and Exhibition, Berlin, Volume 2,
Supplement 1, June 2007, pp 357-35
- …