965 research outputs found
Semi-relativistic charge-current density operator
The charge-current density and two-photon operators consistent with a
single-particle semi-relativistic Hamiltonian are derived within a suitable
functional derivative formalism which preserves gauge invariance. An
application to electron scattering is presented and results are compared with a
fully relativistic case and the non-relativistic cases corrected through fourth
order in M^{-1}.Comment: 20 pages, 3 postscript figures, typos correcte
Modelling stress-diffusion controlled phase transformations : application to stress corrosion cracking
National audienceStress Corrosion Cracking (SCC) represents a significant cause of failure in pressurised water reactors and many efforts have been made to address this problem [1]. It involves the combined action of the environment, mechanical stresses and material properties on the damage of engineering components. Current SCC models developed to predict crack growth behaviour or SCC susceptibility criteria do not fully incorporate the complex multiphysical processes that occur during oxidation at the scale of the microstructure. The aim of the work is to formulate a multi-physics modelling framework based on continuum thermodynamics able to describe the growth of an oxide film on a polycrystalline material using the phase field method
Comment on "Hara's theorem in the constituent quark model"
It is pointed out that current conservation alone does not suffice to prove
Hara's theorem as it was claimed recently. By explicit calculation we show that
the additional implicit assumption made in such "proofs" is that of a
sufficiently localized current.Comment: 8 pages, Late
An exploitation of Boston's Central Artery through redevelopment
Thesis (M.Arch.) Massachusetts Institute of Technology. Dept. of Architecture, 1956.:Accompanying drawings held by MIT Museum.Bibliography: leaves 62-63.by James W. Christopher and Claude P. de Forest.M.Arch
Relativistic Hamiltonians in many-body theories
We discuss the description of a many-body nuclear system using Hamiltonians
that contain the nucleon relativistic kinetic energy and potentials with
relativistic corrections. Through the Foldy-Wouthuysen transformation, the
field theoretical problem of interacting nucleons and mesons is mapped to an
equivalent one in terms of relativistic potentials, which are then expanded at
some order in 1/m_N. The formalism is applied to the Hartree problem in nuclear
matter, showing how the results of the relativistic mean field theory can be
recovered over a wide range of densities.Comment: 14 pages, uses REVTeX and epsfig, 3 postscript figures; a postscript
version of the paper is available by anonymous ftp at
ftp://carmen.to.infn.it/pub/depace/papers/951
Inelastic electron-nucleus scattering and scaling at high inelasticity
Highly inelastic electron scattering is analyzed within the context of the
unified relativistic approach previously considered in the case of quasielastic
kinematics. Inelastic relativistic Fermi gas modeling that includes the
complete inelastic spectrum - resonant, non-resonant and Deep Inelastic
Scattering - is elaborated and compared with experimental data. A
phenomenological extension of the model based on direct fits to data is also
introduced. Within both models, cross sections and response functions are
evaluated and binding energy effects are analyzed. Finally, an investigation of
the second-kind scaling behavior is also presented.Comment: 39 pages, 13 figures; formalism extended and slightly reorganized,
conclusions extended; to appear in Phys. Rev.
Quasi-elastic and inelastic inclusive electron scattering from an oxygen jet target
The results of an experiment on inclusive electron scattering from an oxygen
jet target, performed in a wide range of energy and momentum transfer covering
both quasi-elastic and (1232) resonance regions, are reported. In the
former region the theoretical predictions, obtained including effects of
nucleon-nucleon correlations in both initial and final states, give a good
description of the experimental data. In the inelastic region a broadening as
well as a damping of the resonant part of the cross section with respect to the
free nucleon case is observed. The need of more detailed calculations including
nuclear structure effects on the electroproduction cross section of nucleon
resonances is highlighted.Comment: to appear in Nucl. Phys.
Inelastic nucleon contributions in nuclear response functions
We estimate the contribution of inelastic nucleon excitations to the
inclusive cross section in the CEBAF kinematic range.
Calculations are based upon parameterizations of the nucleon structure
functions measured at SLAC. Nuclear binding effects are included in a
vector-scalar field theory, and are assumed have a minimal effect on the
nucleon excitation spectrum. We find that for q\lsim 1 GeV the elastic and
inelastic nucleon contributions to the nuclear response functions are
comparable, and can be separated, but with roughly a factor of two uncertainty
in the latter from the extrapolation from data. In contrast, for q\rsim 2 GeV
this uncertainty is greatly reduced but the elastic nucleon contribution is
heavily dominated by the inelastic nucleon background.Comment: 20 pages, 7 figures available from the authors at Department of
Physics and Astronomy, University of Rochester, Rochester NY 1462
Toroidal quadrupole transitions associated to collective rotational-vibrational motions of the nucleus
In the frame of the algebraic Riemann Rotational Model one computes the
longitudinal, transverse and toroidal multipoles corresponding to the
excitations of low-lying levels in the ground state band of several even-even
nuclei by inelastic electron scattering (e,e'). Related to these transitions a
new quantity, which accounts for the deviations from the Siegert theorem, is
introduced. The intimate connection between the nuclear vorticity and the
dynamic toroidal quadrupole moment is underlined. Inelastic differential
cross-sections calculated at backscattering angles shows the dominancy of
toroidal form-factors over a broad range of momentum transfer.Comment: 11 pages in LaTex, 3 figures available by fax or mail, accepted for
publication in J.Phys.
- …