8,692 research outputs found
Mechanisms controlling primary and new production in a global ecosystem model ? Part I: The role of the large-scale upper mixed layer variability
International audienceA global general circulation model coupled to a simple six-compartment ecosystem model is used to study the extent to which global variability in primary and export production can be realistically predicted on the basis of advanced parameterizations of upper mixed layer physics, without recourse to introducing extra complexity in model biology. The ''K profile parameterization'' (KPP) scheme employed, combined with 6-hourly external forcing, is able to capture short-term periodic and episodic events such as diurnal cycling and storm-induced deepening. The model realistically reproduces various features of global ecosystem dynamics that have been problematic in previous global modelling studies, using a single generic parameter set. The realistic simulation of deep convection in the North Atlantic, and lack of it in the North Pacific and Southern Oceans, leads to good predictions of chlorophyll and primary production in these contrasting areas. Realistic levels of primary production are predicted in the oligotrophic gyres due to high frequency external forcing of the upper mixed layer (accompanying paper Popova et al., 2006) and novel parameterizations of zooplankton excretion. Good agreement is shown between model and observations at various JFOFS time series sites: BATS, KERFIX, Papa and station India. One exception is that the high zooplankton grazing rates required to maintain low chlorophyll in high-nutrient low-chlorophyll and oligotrophic systems lessened agreement between model and data in the northern North Atlantic, where mesozooplankton with lower grazing rates may be dominant. The model is therefore not globally robust in the sense that additional parameterizations were needed to realistically simulate ecosystem dynamics in the North Atlantic. Nevertheless, the work emphasises the need to pay particular attention to the parameterization of mixed layer physics in global ocean ecosystem modelling as a prerequisite to increasing the complexity of ecosystem models
Reducing space-time to binary information
We present a new description of discrete space-time in 1+1 dimensions in terms of a set of elementary geometrical units that represent its independent classical degrees of freedom. This is achieved by means of a binary encoding that is ergodic in the class of space-time manifolds respecting coordinate invariance of general relativity. Space-time fluctuations can be represented in a classical lattice gas model whose Boltzmann weights are constructed with the discretized form of the Einstein–Hilbert action. Within this framework, it is possible to compute basic quantities such as the Ricci curvature tensor and the Einstein equations, and to evaluate the path integral of discrete gravity. The description as a lattice gas model also provides a novel way of quantization and, at the same time, to quantum simulation of fluctuating space-time
Common Origin for Surface Reconstruction and the Formation of Chains of Metal Atoms
During the fracture of nanocontacts gold spontaneously forms freely suspended
chains of atoms, which is not observed for the iso-electronic noble metals Ag
and Cu. Au also differs from Ag and Cu in forming reconstructions at its
low-index surfaces. Using mechanically controllable break junctions we show
that all the 5d metals that show similar reconstructions (Ir, Pt and Au) also
form chains of atoms, while both properties are absent in the 4d neighbor
elements (Rh, Pd, Ag), indicating a common origin for these two phenomena. A
competition between s and d bonding is proposed as an explanation
A Molecular Platinum Cluster Junction: A Single-Molecule Switch
We present a theoretical study of the electronic transport through
single-molecule junctions incorporating a Pt6 metal cluster bound within an
organic framework. We show that the insertion of this molecule between a pair
of electrodes leads to a fully atomically engineered nano-metallic device with
high conductance at the Fermi level and two sequential high on/off switching
states. The origin of this property can be traced back to the existence of a
HOMO which consists of two degenerate and asymmetric orbitals, lying close in
energy to the Fermi level of the metallic leads. Their degeneracy is broken
when the molecule is contacted to the leads, giving rise to two resonances
which become pinned close to the Fermi level and display destructive
interference.Comment: 4 pages, 4 figures. Reprinted (adapted) with permission from J. Am.
Chem. Soc., 2013, 135 (6), 2052. Copyright 2013 American Chemical Societ
Observation of Supershell Structure in Alkali Metal Nanowires
Nanowires are formed by indenting and subsequently retracting two pieces of
sodium metal. Their cross-section gradually reduces upon retraction and the
diameters can be obtained from the conductance. In previous work we have
demonstrated that when one constructs a histogram of diameters from large
numbers of indentation-retraction cycles, such histograms show a periodic
pattern of stable nanowire diameters due to shell structure in the conductance
modes. Here, we report the observation of a modulation of this periodic
pattern, in agreement with predictions of a supershell structure.Comment: Phys. Rev. Lett., in prin
Semi-classical Theory of Conductance and Noise in Open Chaotic Cavities
Conductance and shot noise of an open cavity with diffusive boundary
scattering are calculated within the Boltzmann-Langevin approach. In
particular, conductance contains a non-universal geometric contribution,
originating from the presence of open contacts. Subsequently, universal
expressions for multi-terminal conductance and noise valid for all chaotic
cavities are obtained classically basing on the fact that the distribution
function in the cavity depends only on energy and using the principle of
minimal correlations.Comment: 4 pages, 1 .eps figur
Full Current Statistics in Diffusive Normal-Superconductor Structures
We study the current statistics in normal diffusive conductors in contact
with a superconductor. Using an extension of the Keldysh Green's function
method we are able to find the full distribution of charge transfers for all
temperatures and voltages. For the non-Gaussian regime, we show that the
equilibrium current fluctuations are enhanced by the presence of the
superconductor. We predict an enhancement of the nonequilibrium current noise
for temperatures below and voltages of the order of the Thouless energy
E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the
normal metal and agrees with experimental data. We demonstrate that the
calculation of the full current statistics is in fact simpler than a concrete
calculation of the noise.Comment: 4 pages, 2 figures (included
- …