274 research outputs found

    How do neural networks see depth in single images?

    Full text link
    Deep neural networks have lead to a breakthrough in depth estimation from single images. Recent work often focuses on the accuracy of the depth map, where an evaluation on a publicly available test set such as the KITTI vision benchmark is often the main result of the article. While such an evaluation shows how well neural networks can estimate depth, it does not show how they do this. To the best of our knowledge, no work currently exists that analyzes what these networks have learned. In this work we take the MonoDepth network by Godard et al. and investigate what visual cues it exploits for depth estimation. We find that the network ignores the apparent size of known obstacles in favor of their vertical position in the image. Using the vertical position requires the camera pose to be known; however we find that MonoDepth only partially corrects for changes in camera pitch and roll and that these influence the estimated depth towards obstacles. We further show that MonoDepth's use of the vertical image position allows it to estimate the distance towards arbitrary obstacles, even those not appearing in the training set, but that it requires a strong edge at the ground contact point of the object to do so. In future work we will investigate whether these observations also apply to other neural networks for monocular depth estimation.Comment: Submitte

    Neuromorphic Control using Input-Weighted Threshold Adaptation

    Full text link
    Neuromorphic processing promises high energy efficiency and rapid response rates, making it an ideal candidate for achieving autonomous flight of resource-constrained robots. It will be especially beneficial for complex neural networks as are involved in high-level visual perception. However, fully neuromorphic solutions will also need to tackle low-level control tasks. Remarkably, it is currently still challenging to replicate even basic low-level controllers such as proportional-integral-derivative (PID) controllers. Specifically, it is difficult to incorporate the integral and derivative parts. To address this problem, we propose a neuromorphic controller that incorporates proportional, integral, and derivative pathways during learning. Our approach includes a novel input threshold adaptation mechanism for the integral pathway. This Input-Weighted Threshold Adaptation (IWTA) introduces an additional weight per synaptic connection, which is used to adapt the threshold of the post-synaptic neuron. We tackle the derivative term by employing neurons with different time constants. We first analyze the performance and limits of the proposed mechanisms and then put our controller to the test by implementing it on a microcontroller connected to the open-source tiny Crazyflie quadrotor, replacing the innermost rate controller. We demonstrate the stability of our bio-inspired algorithm with flights in the presence of disturbances. The current work represents a substantial step towards controlling highly dynamic systems with neuromorphic algorithms, thus advancing neuromorphic processing and robotics. In addition, integration is an important part of any temporal task, so the proposed Input-Weighted Threshold Adaptation (IWTA) mechanism may have implications well beyond control tasks

    Neuromorphic computing for attitude estimation onboard quadrotors

    Full text link
    Compelling evidence has been given for the high energy efficiency and update rates of neuromorphic processors, with performance beyond what standard Von Neumann architectures can achieve. Such promising features could be advantageous in critical embedded systems, especially in robotics. To date, the constraints inherent in robots (e.g., size and weight, battery autonomy, available sensors, computing resources, processing time, etc.), and particularly in aerial vehicles, severely hamper the performance of fully-autonomous on-board control, including sensor processing and state estimation. In this work, we propose a spiking neural network (SNN) capable of estimating the pitch and roll angles of a quadrotor in highly dynamic movements from 6-degree of freedom Inertial Measurement Unit (IMU) data. With only 150 neurons and a limited training dataset obtained using a quadrotor in a real world setup, the network shows competitive results as compared to state-of-the-art, non-neuromorphic attitude estimators. The proposed architecture was successfully tested on the Loihi neuromorphic processor on-board a quadrotor to estimate the attitude when flying. Our results show the robustness of neuromorphic attitude estimation and pave the way towards energy-efficient, fully autonomous control of quadrotors with dedicated neuromorphic computing systems
    • …
    corecore