16 research outputs found

    Gene duplication and protein evolution in tick-host interactions

    Get PDF
    Ticks modulate their hosts' defense responses by secreting a biopharmacopiea of hundreds to thousands of proteins and bioactive chemicals into the feeding site (tick-host interface). These molecules and their functions evolved over millions of years as ticks adapted to blood-feeding, tick lineages diverged, and host-shifts occurred. The evolution of new proteins with new functions is mainly dependent on gene duplication events. Central questions around this are the rates of gene duplication, when they occurred and how new functions evolve after gene duplication. The current review investigates these questions in the light of tick biology and considers the possibilities of ancient genome duplication, lineage specific expansion events, and the role that positive selection played in the evolution of tick protein function. It contrasts current views in tick biology regarding adaptive evolution with the more general view that neutral evolution may account for the majority of biological innovations observed in ticks.The Economic Competitive Support Programme (30/01/V010) and the National Research Foundation (NRF) Incentive Funding (IFR2011032400016) for Rated Researchers (NRF-Mans). MdC was supported by an NRF/Department of Science and Technology—Professional Development Program (NRF/DST-PDP) studentship.http://www.frontiersin.org/Cellular_and_Infection_Microbiologyam2017Veterinary Tropical Disease

    Next-generation sequencing as means to retrieve tick systematic markers, with the focus on Nuttalliella namaqua (Ixodoidea : Nuttalliellidae)

    Get PDF
    Nuclear ribosomal RNA (18S and 28S rRNA) and mitochondrial genomes are commonly used in tick systematics. The ability to retrieve these markers using next-generation sequencing was investigated using the tick Nuttalliella namaqua. Issues related to nuclear markers may be resolved using this approach, notably, the monotypic status of N. namaqua and its basal relationship to other tick families. Four different Illumina datasets (∼55 million, 100 bp reads each) were generated from a single tick specimen and assembled to give 350k-390k contigs. A genome size of ∼1 Gbp was estimated with low levels of repetitive elements. Contigs (>1000 bp, >50-fold coverage) present in most assemblies (n=69), included host-derived 18S and 28S rRNA, tick and host-derived transposable elements, full-length tick 18S and 28 rRNA, the mitochondrial genome in single contig assemblies and the histone cassette. Coverage for the nuclear rRNA genes was above 1000-fold confirming previous sequencing errors in the 18S rRNA gene, thereby maintaining the monotypic status of this tick. Nuclear markers for the soft tick Argas africolumbae were also retrieved from next-generation data. Phylogenetic analysis of a concatenated 18S-28S rRNA dataset supported the grouping of N. namaqua at the base of the tick tree and the two main tick families in separate clades. This study confirmed the monotypic status of N. namaqua and its basal relationship to other tick families. Next-generation sequencing of genomic material to retrieve high quality nuclear and mitochondrial systematic markers for ticks is viable and may resolve issues around conventional sequencing errors when comparing closely related tick species.The Joy Liebenberg Trust (21/19/JT02) allocated to BM, incentive funding for rated researchers grant from the National Research Foundation of South Africa (NRF-Mans 76499), and the ARC Tick Vaccine project (30/01/V010).http://www.elsevier.com/locate/ttbdishb2017Veterinary Tropical Disease

    Ancestral reconstruction of tick lineages

    Get PDF
    Ancestral reconstruction in its fullest sense aims to describe the complete evolutionary history of a lineage. This depends on accurate phylogenies and an understanding of the key characters of each parental lineage. An attempt is made to delineate our current knowledge with regard to the ancestral reconstruction of the tick (Ixodida) lineage. Tick characters may be assigned to Core of Life, Lineages of Life or Edges of Life phenomena depending on how far back these characters may be assigned in the evolutionary Tree of Life. These include housekeeping genes, sub-cellular systems, heme processing (Core of Life), development, moulting, appendages, nervous and organ systems, homeostasis, respiration (Lineages of Life), specific adaptations to a blood-feeding lifestyle, including the complexities of salivary gland secretions and tick–host interactions (Edges of Life). The phylogenetic relationships of lineages, their origins and importance in ancestral reconstruction are discussed. Uncertainties with respect to systematic relationships, ancestral reconstruction and the challenges faced in comparative transcriptomics (next-generation sequencing approaches) are highlighted. While almost 150 years of information regarding tick biology have been assembled, progress in recent years indicates that we are in the infancy of understanding tick evolution. Even so, broad reconstructions can be made with relation to biological features associated with various lineages. Conservation of characters shared with sister and parent lineages are evident, but appreciable differences are present in the tick lineage indicating modification with descent, as expected for Darwinian evolutionary theory. Many of these differences can be related to the hematophagous lifestyle of ticks.This project was funded by the Joy Liebenberg Trust (21/19/JT02)allocated to BM, incentive funding for rated researchers grant from the National Research Foundation of South Africa (NRF-Mans76499), and the ARC Tick Vaccine project (30/01/V010).http://www.elsevier.com/locate/ttbdis2017-06-30hb2016Veterinary Tropical Disease

    De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding

    Get PDF
    Tick secretory proteins modulate haemostasis, inflammation and immune responses of the host and are attractive recombinant anti-tick vaccine candidates. Yet, many of the proteins have not been characterised due to the limited sequence availability for ticks and other arthropods for homology-based annotation. To address this limitation, we sequenced the salivary glands of the economically important adult male and female Rhipicephalus appendiculatus ticks during feeding. The quality-filtered Illumina sequencing reads were de novo assembled to generate a R. appendiculatus sialotranscriptome of 21,410 transcripts. A non-redundant set of 12,761 R. appendiculatus proteins was predicted from the transcripts, including 2134 putative secretory and 8237 putative housekeeping proteins. Secretory proteins accounted for most of the expression in the salivary gland transcriptome (63%). Of the secretory protein class, the Glycine-rich superfamily contributed 66% and the Lipocalin family 12% of the transcriptome expression. Differential expression analysis identified 1758 female and 2346 male up-regulated transcripts, suggesting varying blood-feeding mechanisms employed between female and male ticks. The sialotranscriptome assembled in this work, greatly improves on the sequence information available for R. appendiculatus and is a valuable resource for potential future vaccine candidate selection.The Economic Competitive Support Programme (30/01/V010) and Incentive Funding for Rated Researchers (NRF-Mans).http://www.elsevier.com/locate/ttbdis2017-06-30hb2016Veterinary Tropical Disease

    Gene Duplication and Protein Evolution in Tick-Host Interactions

    No full text
    Ticks modulate their hosts' defense responses by secreting a biopharmacopiea of hundreds to thousands of proteins and bioactive chemicals into the feeding site (tick-host interface). These molecules and their functions evolved over millions of years as ticks adapted to blood-feeding, tick lineages diverged, and host-shifts occurred. The evolution of new proteins with new functions is mainly dependent on gene duplication events. Central questions around this are the rates of gene duplication, when they occurred and how new functions evolve after gene duplication. The current review investigates these questions in the light of tick biology and considers the possibilities of ancient genome duplication, lineage specific expansion events, and the role that positive selection played in the evolution of tick protein function. It contrasts current views in tick biology regarding adaptive evolution with the more general view that neutral evolution may account for the majority of biological innovations observed in ticks

    Gene Duplication and Protein Evolution in Tick-Host Interactions

    Get PDF
    Ticks modulate their hosts' defense responses by secreting a biopharmacopiea of hundreds to thousands of proteins and bioactive chemicals into the feeding site (tick-host interface). These molecules and their functions evolved over millions of years as ticks adapted to blood-feeding, tick lineages diverged, and host-shifts occurred. The evolution of new proteins with new functions is mainly dependent on gene duplication events. Central questions around this are the rates of gene duplication, when they occurred and how new functions evolve after gene duplication. The current review investigates these questions in the light of tick biology and considers the possibilities of ancient genome duplication, lineage specific expansion events, and the role that positive selection played in the evolution of tick protein function. It contrasts current views in tick biology regarding adaptive evolution with the more general view that neutral evolution may account for the majority of biological innovations observed in ticks.The Economic Competitive Support Programme (30/01/V010) and the National Research Foundation (NRF) Incentive Funding (IFR2011032400016) for Rated Researchers (NRF-Mans). MdC was supported by an NRF/Department of Science and Technology—Professional Development Program (NRF/DST-PDP) studentship.http://www.frontiersin.org/Cellular_and_Infection_Microbiologyam2017Veterinary Tropical Disease

    De novo assembled salivary gland transcriptome and expression pattern analyses for Rhipicephalus evertsi evertsi Neuman, 1897 male and female ticks

    No full text
    Ticks secrete proteins in their saliva that change over the course of feeding to modulate the host infammation, immune responses, haemostasis or may cause paralysis. RNA next generation sequencing technologies can reveal the complex dynamics of tick salivary glands as generated from various tick life stages and/or males and females. The current study represents 15,115 Illumina sequenced contigs of the salivary gland transcriptome from male and female Rhipicephalus evertsi evertsi ticks of early, mid and late feeding stages from 1320 separate assemblies using three short read assemblers. The housekeeping functional class contributed to the majority of the composition of the transcriptome (80%) but with lower expression (51%), while the secretory protein functional class represented only 14% of the transcriptome but 46% of the total coverage. Six percent had an unknown status contributing 3% of the overall expression in the salivary glands. Platelet aggregation inhibitors, blood clotting inhibitors and immune-modulators orthologous to the ancestral tick lineages were confrmed in the transcriptome and their diferential expression during feeding in both genders observed. This transcriptome contributes data of importance to salivary gland biology and blood feeding physiology of non-model organisms.The National Research Foundation of South Africa and the Economic Competitive Support Programme.http://www.nature.com/srep/index.htmlpm2022Veterinary Tropical Disease
    corecore