467 research outputs found

    Effect of process conditions on the performance of a dual-reactor biodesulfurization process

    Get PDF
    The biotechnological gas desulfurization process under haloalkaline conditions is widely applied for removal of toxic H2S from sour gas streams. In this process H2S is biologically oxidized into elemental sulfur. Recently, the process has been extended with an anaerobic process step (dual-reactor line-up), increasing the selectivity for elemental sulfur (S8) from ~85–97% and decreasing the formation of (thio)sulfate. It was also found that biological sulfide uptake took place in the anaerobic bioreactor. In order to apply this process in industry, more insight is needed of the effect of the process conditions on the process performance. The effect of the process conditions HRT and sulfide concentration in the anaerobic bioreactor and pH on the overall product selectivities and on biological sulfide uptake in the anaerobic bioreactor were investigated. 7 experiments were performed in a pilot-scale biodesulfurization set-up. In all experiments, high selectivities (>95%) for S8 formation were obtained, except when the pH in the aerated bioreactor was increased from 8.5 to 9.1 (selectivity of 88%). Furthermore, biological sulfide uptake in the anaerobic bioreactor increased at higher sulfide concentrations and at higher pH. We hypothesize the biological sulfide uptake under anaerobic conditions is related to polysulfide formation. Our results increase the understanding how to control biological sulfide conversion in the dual-reactor biodesulfurization process

    Photobiont diversity in lichen symbioses from extreme environments

    Get PDF
    Fungal–algal relationships—both across evolutionary and ecological scales—are finely modulated by the presence of the symbionts in the environments and by the degree of selectivity and specificity that either symbiont develop reciprocally. In lichens, the green algal genus Trebouxia Puymaly is one of the most frequently recovered chlorobionts. Trebouxia species-level lineages have been recognized on the basis of their morphological and phylogenetic diversity, while their ecological preferences and distribution are still only partially unknown. We selected two cosmopolitan species complexes of lichen-forming fungi as reference models, i.e., Rhizoplaca melanophthalma and Tephromela atra, to investigate the diversity of their associated Trebouxia spp. in montane habitats across their distributional range worldwide. The greatest diversity of Trebouxia species-level lineages was recovered in the altitudinal range 1,000–2,500 m a.s.l. A total of 10 distinct Trebouxia species-level lineages were found to associate with either mycobiont, for which new photobionts are reported. One previously unrecognized Trebouxia species-level lineage was identified and is here provisionally named Trebouxia “A52.” Analyses of cell morphology and ultrastructure were performed on axenically isolated strains to fully characterize the new Trebouxia “A52” and three other previously recognized lineages, i.e., Trebouxia “A02,” T. vagua “A04,” and T. vagua “A10,” which were successfully isolated in culture during this study. The species-level diversity of Trebouxia associating with the two lichen-forming fungi in extreme habitats helps elucidate the evolutionary pathways that this lichen photobiont genus traversed to occupy varied climatic and vegetative regimes

    SIR-C/X-SAR data calibration and ground truth campaign over the NASA-CB1 test-site

    Get PDF
    During the Space Shuttle Endeavour mission in October 1994, a remote-sensing campaign was carried out with the objectives of both radiometric and polarimetric calibration and ground truth data acquisition of bare soils. This paper presents the results obtained in the experiment. Polarimetric cross-talk and channel imbalance values, as well as radiometric calibration parameters, have been found to be within the science requirements for SAR images. Regarding ground truth measurements, a wide spread in the height rms values and correlation lengths has been observed, which has motivated a critical revisiting of surface parameters descriptors

    Infection caused by Sporothrix schenckii: an autochthonous case in Bari, Southern Italy

    Get PDF
    An autochthonous case of lymphocutaneous sporotrichosis caused by Sporothrix schenckii is reported. The patient developed skin lesions localized along the lymphatics that appeared after he suffered an injury while collecting wicker canes in marshy water. The fungus was identified as Sporothrix schenckii by MALDI-TOF and sequencing. Phylogenetic analysis was also performed. Low MIC values were detected for all tested echinocandins and azoles except for fluconazole. The patient was treated with itraconazole without significant improvement. A regression of lesions was observed after 3 months of therapy with voriconazole. Few cases of sporotrichosis have been reported in Europe. However, several cases of sporotrichosis have been described in Italy. The incidence of sporotrichosis in Italy may be underestimated and microbiologists, and clinicians must be aware of this fungal infection

    Towards a Greener and Scalable Synthesis of Na2_{2}Ti6_{6}O13_{13} Nanorods and Their Application as Anodes in Batteries for Grid-Level Energy Storage

    Get PDF
    Grid applications require high power density (for frequency regulation, load leveling, and renewable energy integration), achievable by combining multiple batteries in a system without strict high capacity requirements. For these applications however, safety, cost efficiency, and the lifespan of electrode materials are crucial. Titanates, safe and longevous anode materials providing much lower energy density than graphite, are excellent candidates for this application. The innovative molten salt synthesis approach proposed in this work provides exceptionally pure Na2_{2}Ti6_{6}O13_{13} nanorods generated at 900–1100 °C in a yield ≄80 wt%. It is fast, cost‐efficient, and suitable for industrial upscaling. Electrochemical tests reveal stable performance providing capacities of ≈100 mA h g−1^{-1} (Li) and 40 mA h g−1^{-1} (Na). Increasing the synthesis temperature to 1100 °C leads to a capacity decrease, most likely resulting from 1) the morphology/volume change with the synthesis temperature and 2) distortion of the Na2_{2}Ti6_{6}O13_{13} tunnel structure indicated by electron energy‐loss and Raman spectroscopy. The suitability of pristine Na2_{2}Ti6_{6}O13_{13} as the anode for grid‐level energy storage systems has been proven a priori, without any performance‐boosting treatment, indicating considerable application potential especially due to the high yield and low cost of the synthesis route

    Microbiology and Clinical Outcome of Hospital-Acquired Respiratory Infections in an Italian Teaching Hospital: A Retrospective Study

    Get PDF
    The burden, microbial etiology and clinical impact of hospital-acquired respiratory infections (HARIs) were determined at an Italian teaching hospital over a 12-month period. For this purpose, overall ordinary hospitalizations >= 2 days of subjects over 18 years old with discharge from 1 January 2018 to 31 December 2018 were examined by cross-referencing demographic and clinical data from hospital discharge forms with microbiological data from the computer system of the Microbiology Unit. We identified 329 individuals with HARIs (96 females and 233 males; median age 70 years, range 18-93), who represented 1/4 of the total hospital-acquired infections (HAIs) in the period. The inpatient setting was medical and surgical in similar proportions (169 vs. 160, respectively) and the mean hospital stay was 38.9 +/- 33.6 days. One hundred and forty patients (42.6% of the total sample) were suffering from one or more chronic diseases. A total of 581 microorganisms (82 antibiotic-resistant and 499 non-resistant) were detected in HARI patients. The most common isolated species were Staphylococcus aureus (16.7%), Klebsiella pneumoniae (13.3%), Pseudomonas spp. (12.6%) and Acinetobacter baumannii (10.5%), followed by Enterobacter spp. (5.3%), Escherichia coli (5.2%) and Enterococcus spp. (4.8%). One hundred and sixty-seven individuals (49.0% of the total) had polymicrobial infections. One hundred thirty-one patients (39.8% of the total) underwent endotracheal intubation and mechanical ventilation and 62.6% of them died, compared to 17.7% of the non-intubated patients. Multivariable analysis confirmed a positive correlation between death and increased age (p = 0.05), surgical MDC (p = 0.007), number of microorganisms over the sample mean (p = 0.001), the presence of chronic diseases (p = 0.046), and intubation and mechanical ventilation (p < 0.0001). A positive correlation between intubation and antibiotic-resistant organisms (p = 0.003) was also found. HARIs are still a major public health problem and require constant surveillance due to their severe clinical outcome

    Putative role of circulating human papillomavirus DNA in the development of primary squamous cell carcinoma of the middle rectum: A case report

    Get PDF
    Here we present the case of a patient affected by rectal squamous cell carcinoma in which we demonstrated the presence of Human Papillomavirus (HPV) by a variety of techniques. Collectively, the virus was detected not only in the tumor but also in some regional lymph nodes and in non-neoplastic mucosa of the upper tract of large bowel. By contrast, it was not identifiable in its common sites of entry, namely oral and ano-genital region. We also found HPV DNA in the plasma-derived exosome. Next, by in vitro studies, we confirmed the capability of HPV DNA-positive exosomes, isolated from the supernatant of a HPV DNA positive cell line (CaSki), to transfer its DNA to human colon cancer and normal cell lines. In the stroma nearby the tumor mass we were able to demonstrate the presence of virus DNA in the stromal compartment, supporting its potential to be transferred from epithelial cells to the stromal ones. Thus, this case report favors the notion that human papillomavirus DNA can be vehiculated by exosomes in the blood of neoplastic patients and that it can be transferred, at least in vitro, to normal and neoplastic cells. Furthermore, we showed the presence of viral DNA and RNA in pluripotent stem cells of non-tumor tissue, suggesting that after viral integration (as demonstrated by p16 and RNA in situ hybridization positivity), stem cells might have been activated into cancer stem cells inducing neoplastic transformation of normal tissue through the inactivation of p53, p21, and Rb. It is conceivable that the virus has elicited its oncogenic effect in this specific site and not elsewhere, despite its wide anatomical distribution in the patient, for a local condition of immune suppression, as demonstrated by the increase of T-regulatory (CD4/CD25/FOXP3 positive) and T-exhausted (CD8/PD-1positive) lymphocytes and the M2 polarization (high CD163/CD68 ratio) of macrophages in the neoplastic microenvironment. It is noteworthy that our findings depicted a static picture of a long-lasting dynamic process that might evolve in the development of tumors in other anatomical sites
    • 

    corecore