540 research outputs found

    Management of hyperphosphatemia in patients with end-stage renal disease: focus on lanthanum carbonate

    Get PDF
    Elevated serum phosphate levels as a consequence of chronic kidney disease (CKD) contribute to the increased cardiovascular risk observed in dialysis patients. Protein restriction and dialysis fail to adequately prevent hyperphosphatemia, and in general treatment with oral phosphate binding agents is necessary in patients with advanced CKD. Phosphate plays a pivotal role in the development of vascular calcification, one of the factors contributing to increased cardiovascular risk in CKD patients. Treatment of hyperphosphatemia with standard calcium-based phosphate binders and vitamin D compounds can induce hypercalcemic episodes, increase the Ca × PO4 product and thus add to the risk of ectopic mineralization. In this review, recent clinical as well as experimental data on lanthanum carbonate, a novel, non-calcium, non-resin phosphate binding agent are summarized. Although lanthanum is a metal cation no aluminium-like toxicity is observed since the bioavailability of lanthanum is extremely low and its metabolism differs from that of aluminium. Clinical studies now document the absence of toxic effects of lanthanum for up to 6 years of follow-up. The effects of lanthanum on bone, vasculature and brain are discussed and put in perspective with lanthanum pharmacokinetics

    The Authors Reply

    Get PDF

    Increased serum strontium levels in dialysis patients: An epidemiological survey

    Get PDF
    Increased serum strontium levels in dialysis patients: An epidemiological survey.BackgroundWe previously reported on increased bone strontium levels in dialysis patients with osteomalacia versus those presenting other types of renal osteodystrophy. A causal role of strontium in the development of osteomalacia was established in a chronic renal failure rat model.MethodsTo further elucidate the latter issue and to find out whether dialysis patients from particular centers/countries are at an increased risk for strontium accumulation, a worldwide multicenter study was established. In total, 834 patients from 34 dialysis centers in 23 countries were included. In each of the patients, a serum sample was taken for strontium determination, and water and dialysate samples were taken at the various steps of the water purification process. For each patient clinical data and for each center dialysis modalities were recorded.ResultsStrontium levels in serum of dialysis patients showed major differences between the various centers, ranging from mean values of 25 ± 8 μg/liter in the center with the lowest level up to 466 ± 90 μg/liter in the center with the highest concentration. It is of interest that these high levels were mainly found in developing countries. Furthermore, our data point toward a role of the final dialysate in the accumulation of the element, as indicated by the strong correlation (r = 0.74, P < 0.001) between mean serum and dialysate strontium levels. As the high tap water concentration of strontium was adequately reduced during the water purification process, contamination of the final dialysis fluid occurred by the addition of concentrates contaminated with strontium. Besides the dialysate, other factors, such as duration of dialysis, vitamin D supplements, or types of phosphate binders, played a less important role in the accumulation of the element.ConclusionsData of this multicenter study indicate patients of particular dialysis centers to be at an increased risk for strontium accumulation, the clinical consequence of which is under current investigation

    Cholesterol feeding accentuates the cyclosporine-induced elevation of renal plasminogen activator inhibitor type 1

    Get PDF
    Cholesterol feeding accentuates the cyclosporine-induced elevation of renal plasminogen activator inhibitor type 1. Long-term cyclosporine (CsA) therapy is accompanied by the occurrence of hypercholesterolemia and renal interstitial fibrosis. The present study investigates the effect of dietary cholesterol on CsA-induced lipid disturbances in the rat and on CsA nephrotoxicity. Since plasminogen activator inhibitor type 1 (PAI-1) is a major inhibitor of matrix degradation and elevated plasma PAI-1 levels are reported to be associated with increased low-density lipoprotein (LDL) cholesterol, PAI-1 was examined in the kidneys of rats fed a sodium-deficient diet, with or without cholesterol. After nine weeks, both diet groups were subdivided into a CsA-treated group and a vehicle-treated group. Although cholesterol feeding significantly aggravated CsA-induced renal function impairment, CsA-induced histological lesions were comparable in both diet groups. Cholesterol feeding significantly decreased high-density lipoprotein (HDL) cholesterol irrespective of the treatment, while CsA treatment significantly elevated serum triglycerides irrespective of the diet. Cholesterol feeding alone did not increase the number of infiltrating cells in the renal interstitium. In contrast, in both diet groups CsA treatment caused a significant influx of macrophages, while combined treatment with CsA and cholesterol additionally elevated the number of T-helper cells in the cortex. In all rats, PAI-1 immunostain-ing was found mainly in intracellular vesicles (lysosomes) in proximal tubules, which stained most intensely in fibrotic areas of kidneys from CsA-treated rats. Cholesterol feeding enhanced the CsA-induced elevation of renal PAI-1 immunostaining to a significant level. These results show that, although serum creatinine, PAI-1 staining and cell influx were significantly increased in the cholesterol-fed CsA-treated group compared to the other groups, renal CsA-induced histological lesions were not influenced by cholesterol feeding after short-term (3 weeks) CsA administration. To what extent the more pronounced proximal tubular PAI-1 (inhibitor of matrix degradation) immunostaining in fibrotic areas in the cortex of cholesterol-fed CsA-treated rats contributes to the progression of CsA-induced renal fibrosis remains to be determined

    Increased bone strontium levels in hemodialysis patients with osteomalacia

    Get PDF
    Increased bone strontium levels in hemodialysis patients with osteomalacia.BackgroundIn this study, we report on the association between increased bone strontium levels and the presence of osteomalacia in end-stage renal failure patients treated by hemodialysis.MethodsWe performed a histologic examination and determined the strontium content and strontium/calcium ratios in bone biopsies of 100 hemodialysis patients recruited from various centers all over the world. Aside from the bone strontium concentration, the bone aluminum content was assessed. The bone zinc concentration, a nonrelevant element for bone toxicity, was also measured.ResultsBone strontium levels and bone strontium/calcium ratios were increased in subjects with osteomalacia when compared with those with the other types of renal osteodystrophy. Bone strontium and bone calcium levels correlated with each other. The slope of the linear regression curve correlating these parameters was much steeper in the osteomalacic group (Y = 2.22X - 120) as compared with the other types of renal osteodystrophy (Y = 0.52X - 5.7). Within the group of patients with osteomalacia, bone strontium levels also significantly correlated with the bone aluminum content (r = 0.72, P = 0.018). No such correlation was found for the other types of renal osteodystrophy. The bone zinc concentration of subjects with normal renal function did not differ significantly from the values noted for the various types of renal osteodystrophy taken as separate groups, nor could increased bone zinc concentrations be associated with a particular bone lesion.ConclusionsOur data demonstrate an association between osteomalacia and increased bone strontium concentrations in dialysis patients. Further studies are warranted to establish whether strontium plays either a primary, secondary, or contributive role in the development of the latter type of renal osteodystrophy

    Cellular infiltrates and injury evaluation in a rat model of warm pulmonary ischemia–reperfusion

    Get PDF
    INTRODUCTION: Beside lung transplantation, cardiopulmonary bypass, isolated lung perfusion and sleeve resection result in serious pulmonary ischemia–reperfusion injury, clinically known as acute respiratory distress syndrome. Very little is known about cells infiltrating the lung during ischemia–reperfusion. Therefore, a model of warm ischemia–reperfusion injury was applied to differentiate cellular infiltrates and to quantify tissue damage. METHODS: Fifty rats were randomized into eight groups. Five groups underwent warm ischemia for 60 min followed by 30 min and 1–4 hours of warm reperfusion. An additional group was flushed with the use of isolated lung perfusion after 4 hours of reperfusion. One of two sham groups was also flushed. Neutrophils and oedema were investigated by using samples processed with hematoxylin/eosin stain at a magnification of ×500. Immunohistochemistry with antibody ED-1 (magnification ×250) and antibody 1F4 (magnification ×400) was applied to visualize macrophages and T cells. TdT-mediated dUTP nick end labelling was used for detecting apoptosis. Statistical significance was accepted at P < 0.05. RESULTS: Neutrophils were increased after 30 min until 4 hours of reperfusion as well as after flushing. A doubling in number of macrophages and a fourfold increase in T cells were observed after 30 min until 1 and 2 hours of reperfusion, respectively. Apoptosis with significant oedema in the absence of necrosis was seen after 30 min to 4 hours of reperfusion. CONCLUSIONS: After warm ischemia–reperfusion a significant increase in infiltration of neutrophils, T cells and macrophages was observed. This study showed apoptosis with serious oedema in the absence of necrosis after all periods of reperfusion

    Oxidative modification of low-density lipoproteins and the outcome of renal allografts at 11/2 years

    Get PDF
    Oxidative modification of low-density lipoproteins and the outcome of renal allografts at 11/2 years.BackgroundPrevious studies reported a significant association between hyperlipidemia of the recipient and chronic allograft nephropathy (CAN). However, the nature and the pathogenic mechanism of circulating lipid abnormalities in CAN remain unclear.MethodsIn a prospective study of 50 consecutive adult recipients of a cadaveric renal allograft, we investigated the impact of lipid abnormalities on the outcome of the graft at 11/2 years. Besides morphometric analysis of implantation and protocol biopsies, clinical and biochemical variables were studied at three-month intervals. Plasma concentrations of oxidized low-density lipoprotein (OxLDL) were determined by means of enzyme-linked immunosorbent assay. Immunohistochemical staining for OxLDL and macrophages was performed on paired renal biopsies. Study end points were the fractional interstitial volume and the 24-hour creatinine clearance at 11/2 years.ResultsHigh-density lipoprotein (HDL) cholesterol of the recipient ≤47 mg/dL was a risk factor for the functional (RR = 1.56; 95% CI, 0.978 to 2.497) and the morphological (RR = 2.75; 95% CI, 1.075 to 7.037) outcome of the graft, mainly in patients without acute rejection (RR = 2.03; 95% CI, 1.13 to 3.65, and RR = 4.67; 95% CI, 1.172 to 18.582, respectively). Interstitial accumulation of OxLDL was inversely associated with HDL cholesterol (R = -0.476, P = 0.019), and was associated with a higher density of tubulointerstitial macrophages (R = 0.656, P = 0.001) and a higher fractional interstitial volume at 11/2 years (P = 0.049).ConclusionDecreased HDL cholesterol levels of the recipient adversely affect the outcome of renal allografts through the accumulation of OxLDL in the renal interstitium of the graft. Interstitial accumulation of OxLDL was associated with the presence of macrophages and the development of interstitial fibrosis

    The International Society of Nephrology's International Consortium of Collaborators on Chronic Kidney Disease of Unknown Etiology: report of the working group on approaches to population-level detection strategies and recommendations for a minimum dataset.

    Get PDF
    There is an epidemic of chronic kidney disease (CKD) clustering in rural communities, predominantly in a number of low- and middle-income countries. 1 Tens of thousands of working-aged adults are estimated to have died from the disease in Central America 2 with similar numbers in Sri Lanka. 3 Similar diseases have been reported elsewhere, such as rural regions or communities in India and North and West Africa. Those affected do not have common risk factors or underlying conditions that lead to CKD, such as diabetes, immune-mediated glomerulonephritis, or structural renal disease. In instances where histopathology is available, the predominant feature is tubular atrophy and interstitial fibrosis. Although it is currently unclear whether there is a unified underlying cause, these conditions have been collectively termed CKD of unknown cause (CKDu). Other terms used include “CKD of nontraditional cause,” “Mesoamerican nephropathy,” “chronic intestinal nephritis in agricultural communities,” and “kidney disease of unknown cause in agricultural laborers,” but we have chosen CKDu as the most agnostic terminology
    corecore