16,844 research outputs found
New Duality Transformations in Orbifold Theory
We find new duality transformations which allow us to construct the stress
tensors of all the twisted sectors of any orbifold A(H)/H, where A(H) is the
set of all current-algebraic conformal field theories with a finite symmetry
group H \subset Aut(g). The permutation orbifolds with H = Z_\lambda and H =
S_3 are worked out in full as illustrations but the general formalism includes
both simple and semisimple g. The motivation for this development is the
recently-discovered orbifold Virasoro master equation, whose solutions are
identified by the duality transformations as sectors of the permutation
orbifolds A(D_\lambda)/Z_\lambda.Comment: 48 pages,typos correcte
Thermodynamics of Higher Spin Black Holes in AdS
We discuss the thermodynamics of recently constructed three-dimensional
higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with
generalized asymptotically-anti-de Sitter boundary conditions. From a
holographic perspective, these bulk theories are dual to two-dimensional CFTs
with W_N symmetry algebras, and the black hole solutions are dual to thermal
states with higher spin chemical potentials and charges turned on. Because the
notion of horizon area is not gauge-invariant in the higher spin theory, the
traditional approaches to the computation of black hole entropy must be
reconsidered. One possibility, explored in the recent literature, involves
demanding the existence of a partition function in the CFT, and consistency
with the first law of thermodynamics. This approach is not free from
ambiguities, however, and in particular different definitions of energy result
in different expressions for the entropy. In the present work we show that
there are natural definitions of the thermodynamically conjugate variables that
follow from careful examination of the variational principle, and moreover
agree with those obtained via canonical methods. Building on this intuition, we
derive general expressions for the higher spin black hole entropy and free
energy which are written entirely in terms of the Chern-Simons connections, and
are valid for both static and rotating solutions. We compare our results to
other proposals in the literature, and provide a new and efficient way to
determine the generalization of the Cardy formula to a situation with higher
spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the
free energy adde
Black Hole Meiosis
The enumeration of BPS bound states in string theory needs refinement.
Studying partition functions of particles made from D-branes wrapped on
algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow
trees, we extend the method for computing a refined BPS index, arXiv:0810.4301.
For certain D-particles, a finite number of microstates, namely polar states,
exclusively realized as bound states, determine an entire partition function
(elliptic genus). This underlines their crucial importance: one might call them
the `chromosomes' of a D-particle or a black hole. As polar states also can be
affected by our refinement, previous predictions on elliptic genera are
modified. This can be metaphorically interpreted as `crossing-over in the
meiosis of a D-particle'. Our results improve on hep-th/0702012, provide
non-trivial evidence for a strong split attractor flow tree conjecture, and
thus suggest that we indeed exhaust the BPS spectrum. In the D-brane
description of a bound state, the necessity for refinement results from the
fact that tachyonic strings split up constituent states into `generic' and
`special' states. These are enumerated separately by topological invariants,
which turn out to be partitions of Donaldson-Thomas invariants. As modular
predictions provide a check on many of our results, we have compelling evidence
that our computations are correct.Comment: 46 pages, 8 figures. v2: minor changes. v3: minor changes and
reference adde
Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy
We present [C/Fe] and [N/Fe] abundance ratios and CH({\lambda}4300) and
S({\lambda}3883) index measurements for 94 red giant branch (RGB) stars in the
Sculptor dwarf spheroidal galaxy from VLT/VIMOS MOS observations at a resolving
power R= 1150 at 4020 {\AA}. This is the first time that [N/Fe] abundances are
derived for a large number of stars in a dwarf spheroidal. We found a trend for
the [C/Fe] abundance to decrease with increasing luminosity on the RGB across
the whole metallicity range, a phenomenon observed in both field and globular
cluster giants, which can be interpreted in the framework of evolutionary
mixing of partially processed CNO material. Both our measurements of [C/Fe] and
[N/Fe] are in good agreement with the theoretical predictions for stars at
similar luminosity and metallicity. We detected a dispersion in the carbon
abundance at a given [Fe/H], which cannot be ascribed to measurement
uncertainties alone. We interpret this observational evidence as the result of
the contribution of different nucleosynthesis sources over time to a not
well-mixed interstellar medium. We report the discovery of two new
carbon-enhanced, metal-poor stars. These are likely the result of pollution
from material enriched by asymptotic giant branch stars, as indicated by our
estimates of [Ba/Fe]> +1. We also attempted a search for dissolved globular
clusters in the field of the galaxy by looking for the distinctive C-N pattern
of second population globular clusters stars in a previously detected, very
metal-poor, chemodynamical substructure. We do not detect chemical anomalies
among this group of stars. However, small number statistics and limited spatial
coverage do not allow us to exclude the hypotheses that this substructure forms
part of a tidally shredded globular cluster.Comment: 18 pages, 14 figures, 3 tables. Accepted to A&
AdS Duals of Matrix Strings
We review recent work on the holographic duals of type II and heterotic
matrix string theories described by warped AdS_3 supergravities. In particular,
we compute the spectra of Kaluza-Klein primaries for type I, II supergravities
on warped AdS_3xS^7 and match them with the primary operators in the dual
two-dimensional gauge theories. The presence of non-trivial warp factors and
dilaton profiles requires a modification of the familiar dictionary between
masses and ``scaling'' dimensions of fields and operators. We present these
modifications for the general case of domain wall/QFT correspondences between
supergravities on warped AdS_{d+1}xS^q geometries and super Yang-Mills theories
with 16 supercharges.Comment: 7 pages, Proceedings of the RTN workshop ``The quantum structure of
spacetime and the geometric nature of fundamental interactions'', Leuven,
September 200
Overruled!: Implicit cues rather than an orthographic rule determine Dutch children's vowel spelling
Cyclic Coset Orbifolds
We apply the new orbifold duality transformations to discuss the special case
of cyclic coset orbifolds in further detail. We focus in particular on the case
of the interacting cyclic coset orbifolds, whose untwisted sectors are
Z_\lambda(permutation)-invariant g/h coset constructions which are not \lambda
copies of coset constructions. Because \lambda copies are not involved, the
action of Z_\lambda(permutation) in the interacting cyclic coset orbifolds can
be quite intricate. The stress tensors and ground state conformal weights of
all the sectors of a large class of these orbifolds are given explicitly and
special emphasis is placed on the twisted h subalgebras which are generated by
the twisted (0,0) operators of these orbifolds. We also discuss the systematics
of twisted (0,0) operators in general coset orbifolds.Comment: 30 page
M5-brane Effective Action as an On-shell Action in Supergravity
We show that the covariant effective action for M5-brane is a solution to the
Hamilton-Jacobi (H-J) equations of 11-dimensional supergravity. The solution to
the H-J equations reproduces the supergravity solution that represents the
M2-M5 bound states.Comment: 20 pages, references added, typos correcte
Monitoring the Variable Interstellar Absorption toward HD 219188 with HST/STIS
We discuss the results of continued spectroscopic monitoring of the variable
intermediate-velocity (IV) absorption at v = -38 km/s toward HD 219188. After
reaching maxima in mid-2000, the column densities of both Na I and Ca II in
that IV component declined by factors >= 2 by the end of 2006. Comparisons
between HST/STIS echelle spectra obtained in 2001, 2003, and 2004 and HST/GHRS
echelle spectra obtained in 1994--1995 indicate the following: (1) The
absorption from the dominant species S II, O I, Si II, and Fe II is roughly
constant in all four sets of spectra -- suggesting that the total N(H) and the
(mild) depletions have not changed significantly over a period of nearly ten
years. (2) The column densities of the trace species C I (both ground and
excited fine-structure states) and of the excited state C II* all increased by
factors of 2--5 between 1995 and 2001 -- implying increases in the hydrogen
density n_H (from about 20 cm^{-3} to about 45 cm^{-3}) and in the electron
density n_e (by a factor >= 3) over that 6-year period. (3) The column
densities of C I and C II* -- and the corresponding inferred n_H and n_e --
then decreased slightly between 2001 and 2004. (4) The changes in C I and C II*
are very similar to those seen for Na I and Ca II. The relatively low total
N(H) and the modest n_H suggest that the -38 km/s cloud toward HD 219188 is not
a very dense knot or filament. Partial ionization of hydrogen appears to be
responsible for the enhanced abundances of Na I, C I, Ca II, and C II*. In this
case, the variations in those species appear to reflect differences in density
and ionization [and not N(H)] over scales of tens of AU.Comment: 33 pages, 6 figures, aastex, accepted to Ap
Near Horizon Limits of Massless BTZ and Their CFT Duals
We consider the massless BTZ black hole and show that it is possible to take
its "near horizon" limit in two distinct ways. The first one leads to a null
self-dual orbifold of AdS3 and the second to a spacelike singular AdS3/Z_K
orbifold in the large K limit, the "pinching orbifold". We show that from the
dual 2d CFT viewpoint, the null orbifold corresponds to the p^+=0 sector of the
Discrete Light-Cone Quantisation (DLCQ) of the 2d CFT where a chiral sector of
the CFT is decoupled, while the pinching orbifold corresponds to taking an
infinite mass gap limit in both the right and left sectors of the 2d CFT,
essentially leaving us with the states L_0=\bar L_0=c/24 only. In the latter
case, one can combine the near horizon limit with sending the 3d Planck length
l_P to zero, or equivalently the dual CFT central charge c to infinity. We
provide preliminary evidence that in that case some nontrivial dynamics may
survive the limit.Comment: 22 pages, no figures, v2: minor improvements, references adde
- âŠ