3 research outputs found

    The absence of abdominal pigmentation in livestock associated culicoides following artificial blood feeding and the epidemiological implication for arbovirus surveillance

    Get PDF
    Culicoides midges (Diptera: Ceratopogonidae), the vectors of economically important arboviruses such as bluetongue virus and African horse sickness virus, are of global importance. In the absence of transovarial transmission, the parity rate of a Culicoides population provides imperative information regarding the risk of virus dispersal. Abdominal pigmentation, which develops after blood feeding and ovipositioning, is used as an indicator of parity in Culicoides. During oral susceptibility trials over the last three decades, a persistent proportion of blood engorged females did not develop pigment after incubation. The present study, combining a number of feeding trials and different artificial feeding methods, reports on this phenomenon, as observed in various South African and Italian Culicoides species and populations. The absence of pigmentation in artificial blood-fed females was found in at least 23 Culicoides species, including important vectors such as C. imicola, C. bolitinos, C. obsoletus, and C. scoticus. Viruses were repeatedly detected in these unpigmented females after incubation. Blood meal size seems to play a role and this phenomenon could be present in the field and requires consideration, especially regarding the detection of virus in apparent “nulliparous” females and the identification of overwintering mechanisms and seasonally free vector zones.This publication is part of the project “ArtOmic” (Grant number RF-2016-02362851) which has received funding from the Italian Ministry of Health’s Ricerca Finalizzata programme (2016).https://www.mdpi.com/journal/pathogensam2022Veterinary Tropical Disease

    Vector Competence of Italian Populations of Culicoides for Some Bluetongue Virus Strains Responsible for Recent Northern African and European Outbreaks

    No full text
    The distribution of Bluetongue virus (BTV) in Europe can be represented by two distinct and interconnected epidemiological systems (episystems), each characterized by different ecological characteristics and vector species. This study investigated the vector competence of Italian populations of Culicoides imicola and Culicoides obsoletus/scoticus to some representative BTV strains after artificial oral infection. The BTV strains were selected according to their ability to spread to one or both episystems and included BTV-4 ITA, responsible of the recent Italian and French BTV-4 outbreaks; the BTV-2 strain which caused the first BTV incursion in Italy, Corsica, and Balearic Islands; BTV-4 MOR, responsible for the epidemic in Morocco; and BTV-8, the strain which spread through Europe between 2006 and 2008. Blood-soaked cotton pledgets and Hemotek membrane feeder using Parafilm® membrane were used to artificially feed midges. For each population/strain, recovery rates (positive/tested heads) were evaluated using serogroup- and serotype-specific RT-PCR. The trial demonstrated that, except for the Abruzzo population of C. obsoletus/C. scoticus, which was refractory to BTV-4 MOR infection, all the investigated Culicoides populations are susceptible to the selected BTV strains and that, if prompt vaccination programs and restriction measures had not been implemented, BTV-2 and BTV-4 MOR could have spread all over Europe
    corecore