82 research outputs found
Visual Quality Enhancement in Optoacoustic Tomography using Active Contour Segmentation Priors
Segmentation of biomedical images is essential for studying and
characterizing anatomical structures, detection and evaluation of pathological
tissues. Segmentation has been further shown to enhance the reconstruction
performance in many tomographic imaging modalities by accounting for
heterogeneities of the excitation field and tissue properties in the imaged
region. This is particularly relevant in optoacoustic tomography, where
discontinuities in the optical and acoustic tissue properties, if not properly
accounted for, may result in deterioration of the imaging performance.
Efficient segmentation of optoacoustic images is often hampered by the
relatively low intrinsic contrast of large anatomical structures, which is
further impaired by the limited angular coverage of some commonly employed
tomographic imaging configurations. Herein, we analyze the performance of
active contour models for boundary segmentation in cross-sectional optoacoustic
tomography. The segmented mask is employed to construct a two compartment model
for the acoustic and optical parameters of the imaged tissues, which is
subsequently used to improve accuracy of the image reconstruction routines. The
performance of the suggested segmentation and modeling approach are showcased
in tissue-mimicking phantoms and small animal imaging experiments.Comment: Accepted for publication in IEEE Transactions on Medical Imagin
Characterization of Brown Adipose Tissue in a Diabetic Mouse Model with Spiral Volumetric Optoacoustic Tomography
PURPOSE
Diabetes is associated with a deterioration of the microvasculature in brown adipose tissue (BAT) and with a decrease in its metabolic activity. Multispectral optoacoustic tomography has been recently proposed as a new tool capable of differentiating healthy and diabetic BAT by observing hemoglobin gradients and microvasculature density in cross-sectional (2D) views. We report on the use of spiral volumetric optoacoustic tomography (SVOT) for an improved characterization of BAT.
PROCEDURES
A streptozotocin-induced diabetes model and control mice were scanned with SVOT. Volumetric oxygen saturation (sO) as well as total blood volume (TBV) in the subcutaneous interscapular BAT (iBAT) was quantified. Segmentation further enabled separating feeding and draining vessels from the BAT anatomical structure.
RESULTS
Scanning revealed a 46Â % decrease in TBV and a 25Â % decrease in sO in the diabetic iBAT with respect to the healthy control.
CONCLUSIONS
These results suggest that SVOT may serve as an effective tool for studying the effects of diabetes on BAT. The volumetric optoacoustic imaging probe used for the SVOT scans can be operated in a handheld mode, thus potentially providing a clinical translation route for BAT-related studies with this imaging technology
Multi-scale volumetric dynamic optoacoustic and laser ultrasound (OPLUS) imaging enabled by semi-transparent optical guidance
Major biological discoveries have been made by interrogating living organisms
with light. However, the limited penetration of unscattered photons within
biological tissues severely limits the depth range covered by optical methods.
Deep-tissue imaging has been achieved by combining light and ultrasound.
Optoacoustic imaging uniquely exploits optical generation of ultrasound to
render high-resolution images at depths unattainable with optical microscopy.
Recently, laser ultrasound has further been suggested as a means of generating
broadband acoustic waves for high-resolution pulse-echo ultrasound imaging.
Herein, we propose an approach to simultaneously interrogate biological tissues
with light and ultrasound based on layer-by-layer coating of silica optical
fibers with a controlled degree of transparency. We exploit the time separation
between optoacoustic signals and ultrasound echoes collected with a custom-made
spherical array transducer for simultaneous three-dimensional optoacoustic and
laser ultrasound (OPLUS) imaging with a single laser pulse. OPLUS is shown to
enable large-scale comprehensive anatomical characterization of tissues along
with functional multi-spectral imaging of spectrally-distinctive chromophores
and assessment of cardiac dynamics at ultrafast rates only limited by the pulse
repetition frequency of the laser. The suggested approach provides a flexible
and scalable means for developing a new generation of systems synergistically
combining the powerful capabilities of optoacoustics and ultrasound imaging in
biology and medicine.Comment: 21 pages, 4 figure
Monitoring mouse brain perfusion with hybrid magnetic resonance optoacoustic tomography
Progress in brain research critically depends on the development of next-generation multi-modal imaging tools capable of capturing transient functional events and multiplexed contrasts noninvasively and concurrently, thus enabling a holistic view of dynamic events in vivo. Here we report on a hybrid magnetic resonance and optoacoustic tomography (MROT) system for murine brain imaging, which incorporates an MR-compatible spherical matrix array transducer and fiber-based light illumination into a 9.4 T small animal scanner. An optimized radiofrequency coil has further been devised for whole-brain interrogation. System's utility is showcased by acquiring complementary angiographic and soft tissue anatomical contrast along with simultaneous dual-modality visualization of contrast agent dynamics in vivo
Volumetric optoacoustic neurobehavioral tracking of epileptic seizures in freely-swimming zebrafish larvae
Fast three-dimensional imaging of freely-swimming zebrafish is essential to understand the link between neuronal activity and behavioral changes during epileptic seizures. Studying the complex spatiotemporal patterns of neuronal activity at the whole-brain or -body level typically requires physical restraint, thus hindering the observation of unperturbed behavior. Here we report on real-time volumetric optoacoustic imaging of aberrant circular swimming activity and calcium transients in freely behaving zebrafish larvae, continuously covering their motion across an entire three-dimensional region. The high spatiotemporal resolution of the technique enables capturing ictal-like epileptic seizure events and quantifying their propagation speed, independently validated with simultaneous widefield fluorescence recordings. The work sets the stage for discerning functional interconnections between zebrafish behavior and neuronal activity for studying fundamental mechanisms of epilepsy and in vivo validation of treatment strategies
Multimodal assessment of non-alcoholic fatty liver disease with transmission-reflection optoacoustic ultrasound
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of conditions associated to fat deposition and damage of liver tissue. Early detection of fat accumulation is essential to avoid progression of NAFLD to serious pathological stages such as liver cirrhosis and hepatocellular carcinoma. Methods: We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS), which combines the advantages of optical and acoustic contrasts, for an early-stage multi-parametric assessment of NAFLD in mice. Results: The multispectral optoacoustic imaging allowed for spectroscopic differentiation of lipid content, as well as the bio-distributions of oxygenated and deoxygenated hemoglobin in liver tissues in vivo. The pulse-echo (reflection) ultrasound (US) imaging further provided a valuable anatomical reference whilst transmission US facilitated the mapping of speed of sound changes in lipid-rich regions, which was consistent with the presence of macrovesicular hepatic steatosis in the NAFLD livers examined with ex vivo histological staining. Conclusion: The proposed multimodal approach facilitates quantification of liver abnormalities at early stages using a variety of optical and acoustic contrasts, laying the ground for translating the TROPUS approach toward diagnosis and monitoring NAFLD in patients
Deep optoacoustic localization microangiography of ischemic stroke in mice
Super-resolution optoacoustic imaging of microvascular structures deep in mammalian tissues has so far been impeded by strong absorption from densely-packed red blood cells. Here we devised 5 µm biocompatible dichloromethane-based microdroplets exhibiting several orders of magnitude higher optical absorption than red blood cells at near-infrared wavelengths, thus enabling single-particle detection in vivo. We demonstrate non-invasive three-dimensional microangiography of the mouse brain beyond the acoustic diffraction limit (<20 µm resolution). Blood flow velocity quantification in microvascular networks and light fluence mapping was also accomplished. In mice affected by acute ischemic stroke, the multi-parametric multi-scale observations enabled by super-resolution and spectroscopic optoacoustic imaging revealed significant differences in microvascular density, flow and oxygen saturation in ipsi- and contra-lateral brain hemispheres. Given the sensitivity of optoacoustics to functional, metabolic and molecular events in living tissues, the new approach paves the way for non-invasive microscopic observations with unrivaled resolution, contrast and speed
Spiral volumetric optoacoustic tomography of reduced oxygen saturation in the spinal cord of M83 mouse model of Parkinson’s disease
Purpose: Metabolism and bioenergetics in the central nervous system play important roles in the pathophysiology of Parkinson’s disease (PD). Here, we employed a multimodal imaging approach to assess oxygenation changes in the spinal cord of the transgenic M83 murine model of PD overexpressing the mutated A53T alpha-synuclein form in comparison with non-transgenic littermates.
Methods: In vivo spiral volumetric optoacoustic tomography (SVOT) was performed to assess oxygen saturation (sO) in the spinal cords of M83 mice and non-transgenic littermates. Ex vivo high-field T1-weighted (T1w) magnetic resonance imaging (MRI) at 9.4T was used to assess volumetric alterations in the spinal cord. 3D SVOT analysis and deep learning-based automatic segmentation of T1w MRI data for the mouse spinal cord were developed for quantification. Immunostaining for phosphorylated alpha-synuclein (pS129 α-syn), as well as vascular organization (CD31 and GLUT1), was performed after MRI scan.
Results: In vivo SVOT imaging revealed a lower sO in the spinal cord of M83 mice compared to non-transgenic littermates at sub-100 μm spatial resolution. Ex vivo MRI-assisted by in-house developed deep learning-based automatic segmentation (validated by manual analysis) revealed no volumetric atrophy in the spinal cord of M83 mice compared to non-transgenic littermates at 50 μm spatial resolution. The vascular network was not impaired in the spinal cord of M83 mice in the presence of pS129 α-syn accumulation.
Conclusion: We developed tools for deep-learning-based analysis for the segmentation of mouse spinal cord structural MRI data, and volumetric analysis of sO data. We demonstrated non-invasive high-resolution imaging of reduced sO in the absence of volumetric structural changes in the spinal cord of PD M83 mouse model
- …