5,575 research outputs found

    Super-hydrodynamic limit in interacting particle systems

    Full text link
    This paper is a follow-up of the work initiated in [3], where it has been investigated the hydrodynamic limit of symmetric independent random walkers with birth at the origin and death at the rightmost occupied site. Here we obtain two further results: first we characterize the stationary states on the hydrodynamic time scale and show that they are given by a family of linear macroscopic profiles whose parameters are determined by the current reservoirs and the system mass. Then we prove the existence of a super-hyrdrodynamic time scale, beyond the hydrodynamic one. On this larger time scale the system mass fluctuates and correspondingly the macroscopic profile of the system randomly moves within the family of linear profiles, with the randomness of a Brownian motion.Comment: 22 page

    Non equilibrium stationary state for the SEP with births and deaths

    Full text link
    We consider the symmetric simple exclusion process in the interval \La_N:=[-N,N]\cap\mathbb Z with births and deaths taking place respectively on suitable boundary intervals I+I_+ and I−I_-, as introduced in De Masi et al. (J. Stat. Phys. 2011). We study the stationary measure density profile in the limit $N\to\infty

    The cosmic microwave background: observing directly the early universe

    Full text link
    The Cosmic Microwave Background (CMB) is a relict of the early universe. Its perfect 2.725K blackbody spectrum demonstrates that the universe underwent a hot, ionized early phase; its anisotropy (about 80 \mu K rms) provides strong evidence for the presence of photon-matter oscillations in the primeval plasma, shaping the initial phase of the formation of structures; its polarization state (about 3 \mu K rms), and in particular its rotational component (less than 0.1 \mu K rms) might allow to study the inflation process in the very early universe, and the physics of extremely high energies, impossible to reach with accelerators. The CMB is observed by means of microwave and mm-wave telescopes, and its measurements drove the development of ultra-sensitive bolometric detectors, sophisticated modulators, and advanced cryogenic and space technologies. Here we focus on the new frontiers of CMB research: the precision measurements of its linear polarization state, at large and intermediate angular scales, and the measurement of the inverse-Compton effect of CMB photons crossing clusters of Galaxies. In this framework, we will describe the formidable experimental challenges faced by ground-based, near-space and space experiments, using large arrays of detectors. We will show that sensitivity and mapping speed improvement obtained with these arrays must be accompanied by a corresponding reduction of systematic effects (especially for CMB polarimeters), and by improved knowledge of foreground emission, to fully exploit the huge scientific potential of these missions.Comment: In press. Plenary talk. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Fourier law, phase transitions and the stationary Stefan problem

    Full text link
    We study the one-dimensional stationary solutions of an integro-differential equation derived by Giacomin and Lebowitz from Kawasaki dynamics in Ising systems with Kac potentials, \cite{GiacominLebowitz}. We construct stationary solutions with non zero current and prove the validity of the Fourier law in the thermodynamic limit showing that below the critical temperature the limit equilibrium profile has a discontinuity (which defines the position of the interface) and satisfies a stationary free boundary Stefan problem. Under-cooling and over-heating effects are also studied. We show that if metastable values are imposed at the boundaries then the mesoscopic stationary profile is no longer monotone and therefore the Fourier law is not satisfied. It regains however its validity in the thermodynamic limit where the limit profile is again monotone away from the interface

    A cryogenic waveplate rotator for polarimetry at mm and sub-mm wavelengths

    Full text link
    Mm and sub-mm waves polarimetry is the new frontier of research in Cosmic Microwave Background and Interstellar Dust studies. Polarimeters working in the IR to MM range need to be operated at cryogenic temperatures, to limit the systematic effects related to the emission of the polarization analyzer. In this paper we study the effect of the temperature of the different components of a waveplate polarimeter, and describe a system able to rotate, in a completely automated way, a birefringent crystal at 4K. We simulate the main systematic effects related to the temperature and non-ideality of the optical components in a Stokes polarimeter. To limit these effects, a cryogenic implementation of the polarimeter is mandatory. In our system, the rotation produced by a step motor, running at room temperature, is transmitted down to cryogenic temperatures by means of a long shaft and gears running on custom cryogenic bearings. Our system is able to rotate, in a completely automated way, a birefringent crystal at 4K, dissipating only a few mW in the cold environment. A readout system based on optical fibers allows to control the rotation of the crystal to better than 0.1{\deg}. This device fulfills the stringent requirements for operation in cryogenic space experiments, like the forthcoming PILOT, BOOMERanG and LSPE.Comment: Submitted to Astronomy and Astrophysics. v1: 10 pages, 8 figures. v2: corrected labels for the bibliographic references (no changes in the bibliography). v3: revised version. 9 pages, 7 figures. Added a new figure. Updated with a more realistic simulation for the interstellar dust and with the latest cryogenic test
    • …
    corecore