63 research outputs found

    Sequence Stratigraphy of Fine-Grained “Shale” Deposits: Case Studies of Representative Shales in the USA and China

    Get PDF
    The fine-grained “shale” deposits host a vast amount of unconventional oil and gas resources. This chapter examines the variations in lithofacies, patterns of well logs, geochemistry, and mineralogy in order to construct a sequence stratigraphic framework of the representative marine Barnett, Woodford, Marcellus, Mowry, and Niobrara fine-grained “shales” (USA) and the marine Longmaxi shale and lacustrine Chang7 lacustrine shale (China). Practical methods are proposed in order to recognize the sequence boundaries, the flooding surfaces, the parasequences and parasequence sets, the system tracts, and variation patterns of facies and rock properties. The case studies for the sequence stratigraphy in the USA and China have revealed that the transgressive systems tract (TST) and the early highstand systems tract (EHST, if identifiable) of fine-grained “shales” have been deposited in anoxic settings. TST and EHST of the siliciclastic “shales” are characterized by high gamma ray, high TOC, and high quartz content, while TST and EHST of the carbonate-dominated fine-grained “shales” are characterized by low gamma ray, organic lean, and carbonate rich fine-grained deposits. The lithofacies, geochemistry, mineralogy, depositional evolution, and reservoir development have been predicted and correlated within a sequence stratigraphic framework for the suggested cases. The best reservoir with the best completion quality is developed in TST and HST in both siliciclastic-dominated and carbonate-dominated fine-grained “shales.

    An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity

    Get PDF
    AbstractOver-high maturity is one of the most vital characteristics of marine organic-rich shale reservoirs from the Lower Paleozoic in the south part of China. The organic matter (OM) in shale gas reservoirs almost went through the entire thermal evolution. During this wide span, a great amount of hydrocarbon was available and numerous pores were observed within the OM including kerogen and solid bitumen/pyrobitumen. These nanopores in solid bitumen/pyrobitumen can be identified using SEM. The imaging can be dissected and understood better based on the sequence of diagenesis and hydrocarbon charge with the shape of OM and pores. In terms of the maturity process showed by the various typical cases, the main effects of the relationship between the reservoir porosity and organic carbon abundance are interpreted as follows: the change and mechanism of reservoirs properties due to thermal evolution are explored, such as gas carbon isotope from partial to complete rollover zone, wettability alteration from water-wet to oil-wet and then water-wet pore surface again, electrical resistivity reversal from the increasing to decreasing stage, and nonlinearity fluctuation of rock elasticity anisotropy. These indicate a possible evolution pathway for shale gas reservoirs from the Lower Paleozoic in the southern China, as well as the general transformation processes between different shale reservoirs in thermal stages

    Suggestions on the development strategy of shale gas in China

    Get PDF
    AbstractFrom the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1) Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2) Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3) The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4) Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5) Reform the mining rights management system, establish information platform of shale gas exploration and development data, and correctly guide the non-oil and gas companies to participate in shale gas exploration and development

    GmFT2a, a Soybean Homolog of FLOWERING LOCUS T, Is Involved in Flowering Transition and Maintenance

    Get PDF
    BACKGROUND: Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion. METHODS: A photoperiod-responsive FT homologue GmFT (renamed as GmFT2a hereafter) was cloned from the photoperiod-sensitive cultivar Zigongdongdou. GmFT2a gene expression under different photoperiods was analyzed by real-time quantitative PCR. In situ hybridization showed direct evidence for its expression during flowering-related processes. GmFT2a was shown to promote flowering using transgenic studies in Arabidopsis and soybean. The effects of photoperiod and temperature on GmFT2a expression were also analyzed in two cultivars with different photoperiod-sensitivities. RESULTS: GmFT2a expression is regulated by photoperiod. Analyses of GmFT2a transcripts revealed a strong correlation between GmFT2a expression and flowering maintenance. GmFT2a transcripts were observed continuously within the vascular tissue up to the shoot apex during flowering. By contrast, transcripts decreased to undetectable levels during flowering reversion. In grafting experiments, the early-flowering, photoperiod-insensitive stock Heihe27 promotes the appearance of GmFT2a transcripts in the shoot apex of scion Zigongdongdou under noninductive LD conditions. The photothermal effects of GmFT2a expression diversity in cultivars with different photoperiod-sensitivities and a hypothesis is proposed. CONCLUSION: GmFT2a expression is associated with flowering induction and maintenance. Therefore, GmFT2a is a potential target gene for soybean breeding, with the aim of increasing geographic adaptation of this crop

    Scientific issues on effective development of marine shale gas in southern China

    No full text
    Shale gas resources are abundant in China and have been discovered in some areas. They are widely distributed in the Cambrian, Ordovician and Silurian strata in Southern China, with technically recoverable resources accounting for 3/4 of the whole country. The Southern China will be the main area for shale gas development. Compared with North America, there are a lot of differences in shale gas exploration and development in Southern China which include intensive tectonic movements in marine shale, complex stress field, deep burial depth, special surface condition, etc. With those, it could be ineffective if the existing theories and techniques of shale gas developed in America are taken for granted. The nano-pore formation effects on shale gas production are unclear; Prediction methods for shale gas production have not been established; In the process of drilling, the horizontal section collapses seriously and the drilling cycle is too long; Stimulation effect is not ideal, with low single well production. In order to effectively develop shale gas in Southern China, three scientific issues should be studied which include quantitative characterization of nano-pore formation and multi-scale storage space, mechanisms of nonlinear flow under multi-field coupling in complex medium, mechanical mechanisms of shale instability and fracture network formation. Key words: shale gas, effective development, scientific issue, southern marine shale, nano-por

    A new method for predicting the shale distribution of the Wufeng Formation in the Upper Yangtze Region, China

    No full text
    Taking the Late Ordovician Wufeng Formation (WFF) shale in the Upper Yangtze region as an example, we conducted a lithofacies distribution, thickness quantification, and paleo-topographic reconstruction of the Late Ordovician graptolite zones. Specifically, we focused on the Late Katian Dicellograptus complexus and the Early Hirnantian Metabolograptus extraordinarius within a chronostratigraphic framework, using the Geographic Information System (GIS) and 310 stratigraphic sections (incl. drilling) obtained from the Geobiodiversity Database (GBDB). Reconstruction of the geographic distribution indicates that the WFF and the synchronous sediments in the Upper Yangtze region contain 8 litho-stratigraphic units, which are geographically distributed across 7 provinces/municipalities and do not exhibit significant variations in lithofacies. The black graptolite shale extends in a broad swath from east to west within the basin, while the other lithofacies deposited during the same period are present on the periphery of the basin. All these strata were deposited in a normal neritic epicontinental sea environment, except for the flysch sediments in the southern Hunan area. The thickness reconstruction involves a comparison of three spatial interpolation methods, including Inverse Distance Weighting (IDW), Kriging, and the Radial Basis Function (RBF). Based on a general verification, IDW is considered to be the optimal method since it has the minimum standard deviation and variance. Based on the contours obtained from the IDW model, the WFF black shale is estimated to have an overall area of 0.67 × 106 km2, an average thickness of 6.2 m, and a total volume of 3902 km3. This shale was deposited over a 2.83 Ma period. Therefore, the volume of shale deposited per million years is estimated to be 1379 km3/my and the average thickness of shale deposited per million years is 2.37 m/my. The Hirnantian paleo-water-depth values obtained using 275 sections were used to infer the Late Katian paleo-topography. These results suggest that the Yangtze platform was surrounded by ancient highlands to the west, south, and north, exhibiting a paleo-geographic framework characterized by one uplift and four depressions. This setting blocked water circulation, causing the water to be contained and forming a closed and restricted marine environment, which was one of the major factors controlling the deposition of the organic-rich WFF shale. With the advent of the big data era of geology, the methodology of GIS-based technology is readily exportable to any resource play having spatial distribution pattern. Results can be provided rapidly and efficiently generated from geological data

    Fracture pore evaluation of the Upper Ordovician Wufeng to Lower Silurian Longmaxi Formations in southern Sichuan Basin, SW China

    No full text
    The reservoir characteristics of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in southern Sichuan Basin were preliminarily revealed in this study by identifying and quantitatively evaluating the fracture pores of five appraisal wells in the central and northern parts of the southern Sichuan Depression by several methods. Four conclusions were reached as follows: (1) In the central zone of the Depression, the deep reservoir space of the Wufeng-Longmaxi producing pay is composed mainly of matrix pores and the microcracks are not common, whether on the local structural highs, flanks or lows. The physical properties are similar to that of the matrix pores in Changning, Weiyuan and Fuling gas fields. (2) In the northern zone of the Depression, the deep reservoir space of the Wufeng-Longmaxi black shale is composed mainly of matrix pores, and fracture pores mainly occur in local discrete intervals, with a total porosity range from 3.5% to 6.7%, on average 5.3%, and fracture porosity of 0-2.1%, on average 0.3%. (3) In the central and northern parts of the southern Sichuan Depression, the Wufeng-Longmaxi producing pays have undeveloped fracture pores and chiefly extensively distributed matrix pores, indirectly indicating relatively stable tectonic activities and corresponding weaker reservoir reworking there than Fuling field located in eastern Sichuan Basin. (4) The size and distribution of the gypsum-salt layer in the Cambrian are the key controlling factors of fracture pore development in the Wufeng-Longmaxi Formations. Therefore, the areas including Wellblocks L7, GS1, eastern Sichuan Basin and western Hubei province, where gypsum-salt layer in the Cambrian is thick and stable, and fracture intervals are likely to occur in the Wufeng-Longmaxi producing pay controlled by decollement structure above salt structure since the Yanshan Movement, are the potential favorable areas for fracture pore development. Key words: Sichuan Basin, southern Sichuan Depression, shale gas, Upper Ordovician Wufeng Formation, Lower Silurian Longmaxi Formation, matrix pore, fracture pore, gypsum-salt layer, decollemen

    Main factors controlling the sedimentation of high-quality shale in the WufengâLongmaxi Fm, Upper Yangtze region

    No full text
    In this paper, the shale of Upper Ordovician Wufeng FmâLower Silurian Longmaxi Fm was taken as an example to reveal the distribution patterns and the main sedimentation controlling factors of high-quality shale in the Upper Yangtze region. This study was made from the aspects of plate movement, fluctuation of sea level, palaeo-productivity, deposition rate and paleogeographic environment, based on the field outcrop sections and drilling data of the southern Sichuan Basin, together with geochemical element testing and biostratigraphical analysis results. The following findings were obtained. First, the collision and joint of Yangtze Plate and its periphery plates and the intra-plate deformation were gentle in the early stage, strong in the late stage, gentle in northwest and strong in southeast, so the sedimentation center in the Upper Yangtze region migrated to the northwest and the closure of sea area in the southern Sichuan Basin changed from weak in early stages to strong in late stages. Second, at the turning period from Ordovician to Silurian, sea levels presented the cycle change of deepâshallowâdeepâshallow. Due to the combination of high sea levels and a stable ocean basin in early stages, an extensive anoxic tectonic sedimentary space favorable for organic matters preservation was formed in the sea floor. Third, due to the effect of tectonic movements and sea closure, palaeo-productivity of sea areas in the southern Sichuan Basin presented a trend of being high in the early stage and low in the late stage, and the deposition rate was also low in the early stage and high in the late stage. And fourth, extensive deposition and distribution of shale rich in organic matters and silica was mainly controlled by a stable sea basin with a low subsidence rate, a relatively high sea level, semi-closed waters and low deposition rates. To sum up, the high-quality shale in the Upper Yangtze region is characterized by multiphase superimposition, lateral extension and northwestward renewal of sedimentary ages, and it is mainly deposited in WufengâRhuddanian age and secondarily in Aeronian age. The main exploration layers are WufengâRhuddanian in southernâeastern Sichuan Depression, RhuddanianâAeronian in Weiyuan area, and WufengâTelychian in centralânorthern Sichuan Basin. Keywords: Upper Yangtze region, Late OrdovicianâEarly Silurian, High-quality shale, Bentonite, Sea level, Palaeo-productivity, Deposition rate, Main exploration layers, Southern Sichuan Basi
    • …
    corecore