34 research outputs found
Augmenter of Liver Regeneration Reduces Ischemia Reperfusion Injury by Less Chemokine Expression, Gr-1 Infiltration and Oxidative Stress
Hepatic ischemia reperfusion injury (IRI) is a major complication in liver resection and transplantation. Here, we analyzed the impact of recombinant human augmenter of liver regeneration (rALR), an anti-oxidative and anti-apoptotic protein, on the deleterious process induced by ischemia reperfusion (IR). Application of rALR reduced tissue damage (necrosis), levels of lipid peroxidation (oxidative stress) and expression of anti-oxidative genes in a mouse IRI model. Damage associated molecule pattern (DAMP) and inflammatory cytokines such as HMGB1 and TNF alpha, were not affected by rALR. Furthermore, we evaluated infiltration of inflammatory cells into liver tissue after IRI and found no change in CD3 or gamma delta TCR positive cells, or expression of IL17/IFN gamma by gamma delta TCR cells. The quantity of Gr-1 positive cells (neutrophils), and therefore, myeloperoxidase activity, was lower in rALR-treated mice. Moreover, we found under hypoxic conditions attenuated ROS levels after ALR treatment in RAW264.7 cells and in primary mouse hepatocytes. Application of rALR also led to reduced expression of chemo-attractants like CXCL1, CXCL2 and CCl2 in hepatocytes. In addition, ALR expression was increased in IR mouse livers after 3 h and in biopsies from human liver transplants with minimal signs of tissue damage. Therefore, ALR attenuates IRI through reduced neutrophil tissue infiltration mediated by lower expression of key hepatic chemokines and reduction of ROS generation
Interleukin-1ß Attenuates Expression of Augmenter of Liver Regeneration (ALR) by Regulating HNF4α Independent of c-Jun
Inflammasomes and innate immune cells have been shown to contribute to liver injury, thereby activating Kupffer cells, which release several cytokines, including IL-6, IL-1ß, and TNFα. Augmenter of liver regeneration (ALR) is a hepatotropic co-mitogen that was found to have anti-oxidative and anti-apoptotic properties and to attenuate experimental non-alcoholic fatty liver disease (NAFLD) and cholestasis. Additionally, hepatic ALR expression is diminished in patients with NAFLD or cholestasis, but less is known about the mechanisms of its regulation under these conditions. Therefore, we aimed to investigate the role of IL-1ß in ALR expression and to elucidate the molecular mechanism of this regulation in vitro. We found that ALR promoter activity and mRNA and protein expression were reduced upon treatment with IL-1ß. Early growth response protein-1 (Egr-1), an ALR inducer, was induced by IL-1ß but could not activate ALR expression, which may be attributed to reduced Egr-1 binding to the ALR promoter. The expression and nuclear localization of hepatocyte nuclear factor 4 α (HNF4α), another ALR-inducing transcription factor, was reduced by IL-1ß. Interestingly, c-Jun, a potential regulator of ALR and HNF4α, showed increased nuclear phosphorylation levels upon IL-1ß treatment but did not change the expression of ALR or HNF4α. In conclusion, this study offers evidence regarding the regulation of anti-apoptotic and anti-oxidative ALR by IL-1ß through reduced Egr-1 promoter binding and diminished HNF4α expression independent of c-Jun activation. Low ALR tissue levels in NAFLD and cholestatic liver injury may be caused by IL-1ß and contribute to disease progression
Increased Expression of RUNX1 in Liver Correlates with NASH Activity Score in Patients with Non-Alcoholic Steatohepatitis (NASH)
Given the important role of angiogenesis in liver pathology, the current study investigated the role of Runt-related transcription factor 1 (RUNX1), a regulator of developmental angiogenesis, in the pathogenesis of non-alcoholic steatohepatitis (NASH). Quantitative RT-PCRs and a transcription factor analysis of angiogenesis-associated differentially expressed genes in liver tissues of healthy controls, patients with steatosis and NASH, indicated a potential role of RUNX1 in NASH. The gene expression of RUNX1 was correlated with histopathological attributes of patients. The protein expression of RUNX1 in liver was studied by immunohistochemistry. To explore the underlying mechanisms, in vitro studies using RUNX1 siRNA and overexpression plasmids were performed in endothelial cells (ECs). RUNX1 expression was significantly correlated with inflammation, fibrosis and NASH activity score in NASH patients. Its expression was conspicuous in liver non-parenchymal cells. In vitro, factors from steatotic hepatocytes and/or VEGF or TGF-beta significantly induced the expression of RUNX1 in ECs. RUNX1 regulated the expression of angiogenic and adhesion molecules in ECs, including CCL2, PECAM1 and VCAM1, which was shown by silencing or over-expression of RUNX1. Furthermore, RUNX1 increased the angiogenic activity of ECs. This study reports that steatosis-induced RUNX1 augmented the expression of adhesion and angiogenic molecules and properties in ECs and may be involved in enhancing inflammation and disease severity in NASH
Repression of Cytochrome P450 Activity in Human Hepatocytes in Vitro by a Novel Hepatotrophic Factor, Augmenter of Liver Regeneration
ABSTRACT Pathological disorders of the liver were shown to be associated with an impairment of hepatic drug metabolism mediated in part by growth factors. Augmenter of liver regeneration (ALR) is a novel liver-specific hepatotrophic growth factor, whereas its action on cytochrome P450 (P450) metabolism is completely unknown. Application of ALR to primary human hepatocytes in vitro reduced P450 isoenzyme activities (1A2 and 2A6) in a dose-dependent manner. Time-course analysis revealed that the maximal inhibitory effect was reached after 24 to 72 h of exposure with 50 nM ALR. The reduction of basal activities upon ALR treatment was 35% for CYP1A2, 56% for CYP2A6, 18% for CYP2B6, and 45% for CYP2E1. Additionally, after induction of P450 with specific inducers, ALR revealed an inhibitory effect on the isoenzyme activities (CYP1A2, 41%; CYP2B6, 35%). Investigations of protein and mRNA expression of basal and induced CYP1A2 and CYP3A4 after ALR treatment by Western blotting and real-time reverse transcriptase-polymerase chain reaction, respectively, suggest a regulation on the transcriptional level. Furthermore, ALR treatment increased nuclear factor kB activity and reduced constitutive androstane receptor but not pregnane X receptor or aryl hydrocarbon receptor expression. In contrast, ALR revealed no effects on phase II reactions (glutathione/oxidized glutathione, UDP-glucuronyltransferase conjugation). Our results indicate that ALR, as a member of hepatotrophic factors, down-regulates basal and induced P450 in human liver and therefore cross-links growth signals to regulation of hepatic metabolism. These findings further imply a possible role of ALR in drug interactions during impaired hepatic function, whereas liver regeneration is triggered
Expression and regulation of liver regeneration associated protein ALR under patho-physiological conditions
Liver regeneration is a multistep and well-orchestrated process which is initiated by injuries like tissue loss, infectious or toxic insults. It has been shown that expression of the hepatotrophic factor �Augmenter of Liver Regeneration� (ALR) is increased within liver regeneration as well as in liver diseases like cirrhosis and liver carcinoma. The aim of this thesis was to analyze how ALR is expressed, regulated and what impact an altered expression of ALR might have on the liver. Therefore, we investigated the expression of ALR in experimental models of liver injury which resemble hepatic patho-physiological disorders such as liver fibrosis and non-alcoholic steatohepatitis. ALR mRNA expression could be shown to be upregulated independent of different insults and is increased in HCC tissues compared to normal tissues. Furthermore, our results showed that IL-6 rapidly induces the mRNA expression and protein level of ALR in human hepatocytes and hepatoma cells, whereas IL-1 beta reduces the expression levels of ALR. No changes in ALR levels could be observed after stimulation with growth factors suggesting that ALR is regulated only by factors which are known to initiate the process of regeneration. Further, we analyzed the promoter sequence of ALR and identified putative regulatory elements for FOXA2, IL 6 RE BP and C/EBP beta. Using luciferase assays and EMSA, we demonstrated that both IL-6 RE-BP and C/EBP beta could not transactivate/bind to the ALR promoter. In contrast, FOXA2 has been found to regulate the expression of ALR, and this regulation was amplified by simultaneously activation using IL-6. Additionally, ALR promoter exhibits a nearly conserved Nrf2 binding site underlining a hepatoprotective function of ALR against oxidative stress. Using ALR overexpressing HepG2 cells we could not detect an altered proliferation rate neither in vitro nor in vivo. ALR-overexpressing cells displayed an enhanced acquirement to adhere and a significant lower ability to migrate and invade compared to wild type cells. Furthermore, we demonstrated that ALR expression induces the expression of the adhesion molecule E-cadherin and reduces the expression of MMP-3 and SNAIL explaining the modulation of E-cadherin by ALR. In conclusion, in this thesis was shown that ALR plays a role in hepatic regeneration independent of its cause and is regulated by upstream factors of liver regeneration like cytokines. Addionally, it was demonstrated that ALR expression counteracts the epithelial mesenchymal transition (EMT) suggesting that application of ALR represents a promising therapeutical strategy for diseases in which EMT is involved
Bile acids down-regulate the expression of Augmenter of Liver Regeneration (ALR) via SHP/HNF4α1 and independent of Egr-1
Bile acids (BA) are signaling molecules that activate nuclear factors and g-protein coupled receptors signaling to maintain metabolic homeostasis. However, accumulation of toxic BA promotes liver injury by initiating inflammation, inducing apoptosis and causing oxidative stress leading to cirrhosis and liver failure. Augmenter of Liver Regeneration (ALR) is a hepatotrophic growth factor with anti-apoptotic and anti-oxidative properties that has been shown to improve mitochondrial and hepatic functions in rats after bile duct ligation. In the current study we aimed to analyze the regulation of the pro-survival protein, ALR, under conditions of cytotoxic concentrations of BA. Promoter studies of ALR (- 733/ + 527 bp) revealed potential binding sites for various transcription factors like Egr-1, HNF4 alpha and two bile acid response elements (BARE). Using a full-length and several truncated promoter constructs for ALR we analyzed promoter activity and showed that BA reduce ALR promoter activity whereas Egr-1 transfection induces it. EMSA and supershift analysis confirmed the specific binding of Egr-1 to its response element within ALR promoter and this binding was reduced upon simultaneous stimulation with BA. We also showed that ALR promoter activity and protein expression are induced by HNF4 alpha 1 and repressed by SHP. In conclusion, these results indicate that BA negatively regulate ALR expression by SHP activation
Augmenter of liver regeneration (ALR) exhibits a dual signaling impact on hepatic acute-phase response
The acute-phase response (APR) is an inflammatory process triggered mainly by IL-6 in response to neoplasm, tissue injury, infection or inflammation. Signaling of IL-6 is transduced by activating STAT3 which rapidly results in production of acute-phase proteins (APPs) such as fibrinogen beta (FGB) and haptoglobin (HP). Augmenter of liver regeneration (ALR), a hepatotrophic factor supporting liver regeneration, was reported to be upregulated after liver damage. In this study we analyzed the role of ALR for IL-6 signaling and APR. Thus, we investigated the expression and release of APPs in human liver cells under conditions of increased exogenous or endogenous ALR. HepG2 cells and ALR-reexpressing HepG2 cells were treated with IL-6 in the presence or absence of exogenous ALR for different time points. The mRNA expression and release of both FGB and HP were measured by RT-PCR and ELISA. We found that exogenously applied ALR attenuated the IL-6-induced mRNA expression and protein secretion of both FGB and HP. In contrast, IL-6 stimulation in HepG2 cells which reexpress ALR, revealed elevated APR shown by increased mRNA expression and secretion of FGB and HP. Furthermore, we found that ALR-mediated regulation of IL-6-induced APP production is accompanied by altered STAT3 activity. While exogenous ALR reduced the IL-6-induced phosphorylation of STAT3, endogenous ALR enhanced STAT3 activity in liver cells. In conclusion, ALR, dependent on its localization, changes APR at least in part, by modifying STAT3 activation. This study shows a dual signaling of ALR and suggests that ALR is pivotal for the regulation of APR, a crucial event in liver injury and regeneration
Interleukin-1ß Attenuates Expression of Augmenter of Liver Regeneration (ALR) by Regulating HNF4α Independent of c-Jun
Inflammasomes and innate immune cells have been shown to contribute to liver injury, thereby activating Kupffer cells, which release several cytokines, including IL-6, IL-1ß, and TNFα. Augmenter of liver regeneration (ALR) is a hepatotropic co-mitogen that was found to have anti-oxidative and anti-apoptotic properties and to attenuate experimental non-alcoholic fatty liver disease (NAFLD) and cholestasis. Additionally, hepatic ALR expression is diminished in patients with NAFLD or cholestasis, but less is known about the mechanisms of its regulation under these conditions. Therefore, we aimed to investigate the role of IL-1ß in ALR expression and to elucidate the molecular mechanism of this regulation in vitro. We found that ALR promoter activity and mRNA and protein expression were reduced upon treatment with IL-1ß. Early growth response protein-1 (Egr-1), an ALR inducer, was induced by IL-1ß but could not activate ALR expression, which may be attributed to reduced Egr-1 binding to the ALR promoter. The expression and nuclear localization of hepatocyte nuclear factor 4 α (HNF4α), another ALR-inducing transcription factor, was reduced by IL-1ß. Interestingly, c-Jun, a potential regulator of ALR and HNF4α, showed increased nuclear phosphorylation levels upon IL-1ß treatment but did not change the expression of ALR or HNF4α. In conclusion, this study offers evidence regarding the regulation of anti-apoptotic and anti-oxidative ALR by IL-1ß through reduced Egr-1 promoter binding and diminished HNF4α expression independent of c-Jun activation. Low ALR tissue levels in NAFLD and cholestatic liver injury may be caused by IL-1ß and contribute to disease progression
Augmenter of Liver Regeneration (ALR) regulates bile acid synthesis and attenuates bile acid-induced apoptosis via glycogen synthase kinase-3β (GSK-3β) inhibition
Bile acid synthesis is restricted to hepatocytes and is rate-limited by CYP7A1 (cholesterol 7 alpha hydroxylase). CYP7A1 expression undergoes tight regulation and is repressed after partial hepatectomy to prevent the accumulation of toxic bile acids. Augmenter of Liver Regeneration (ALR) is a hepatotrophic factor shown to support liver regeneration by augmenting cell proliferation and reducing apoptosis. Nevertheless, less is known about ALR's role in protecting hepatocytes from bile acid accumulation and bile acid-induced apoptosis. Therefore, HepG2 and Huh-7 cells were incubated with recombinant human ALR (rALR) and the expression of CYP7A1, bile acid-induced apoptosis as well as potential molecular mechanisms were analyzed. We found that rALR reduces CYP7A1 expression by increasing nuclear NF kappa B levels. Moreover, rALR reduced glycochenodeoxycholate (GCDC)-induced-apoptosis by decreased expression of pro-apoptotic Box and enhanced expression of antiapoptotic Mc1-1, which is regulated by phosphatidylinositol-3-kinase (PI3K)/Akt activation and glycogen synthase kinase-3 beta (GSK3 beta) phosphorylation. Inhibitors for PI3K/Akt (GSK690693) and GSK3 beta (SB415286) confirmed the specificity of rALR treatment for this pathway. In addition, rALR reduces pro-death signaling by decreasing GCDC-induced JNK phosphorylation. Taken all together, rALR might contribute to protecting hepatocytes from toxic concentrations of bile acids by down-regulating their de novo synthesis, attenuating apoptosis by activation of PI3K/Akt - GSK3 beta pathway and inhibition of JNK signaling. Thereby this suggests a new role of ALR in augmenting the process of liver regeneration