143 research outputs found
A Quantitative Methodology for Identifying Evolvable Space Systems
1st AIAA Space Exploration Conference
January 2005, Orlando, FL.With the growing emphasis on spiral development, a systemâs ability to evolve is
becoming increasingly critical. This is especially true in systems designed for the exploration
of space. While returning to the Moon is widely regarded as the next step in space
exploration, our journey does not end there. Therefore, the technologies, vehicles, and
systems created for near-term lunar missions should be selected and designed with the
future in mind. Intelligently selecting evolvable systems requires a method for quantitatively
measuring evolvability and a procedure for comparing these measurements. This paper
provides a brief discussion of a quantitative methodology for evaluating space system
evolvability and an in-depth application of this methodology to an example case study
Recommended from our members
Coping strategies adopted by small-scale farmers in Tanzania and Kenya to counteract problems caused by storage pests, particularly the Larger Grain Borer
Final Technical Report, Project R 6952 (1 May 1997 - 31 December 1998)
A glassy contribution to the heat capacity of hcp He solids
We model the low-temperature specific heat of solid He in the hexagonal
closed packed structure by invoking two-level tunneling states in addition to
the usual phonon contribution of a Debye crystal for temperatures far below the
Debye temperature, . By introducing a cutoff energy in the
two-level tunneling density of states, we can describe the excess specific heat
observed in solid hcp He, as well as the low-temperature linear term in the
specific heat. Agreement is found with recent measurements of the temperature
behavior of both specific heat and pressure. These results suggest the presence
of a very small fraction, at the parts-per-million (ppm) level, of two-level
tunneling systems in solid He, irrespective of the existence of
supersolidity.Comment: 11 pages, 4 figure
Defects and glassy dynamics in solid He-4: Perspectives and current status
We review the anomalous behavior of solid He-4 at low temperatures with
particular attention to the role of structural defects present in solid. The
discussion centers around the possible role of two level systems and structural
glassy components for inducing the observed anomalies. We propose that the
origin of glassy behavior is due to the dynamics of defects like dislocations
formed in He-4. Within the developed framework of glassy components in a solid,
we give a summary of the results and predictions for the effects that cover the
mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of
the glassy response of solid He-4. Our proposed glass model for solid He-4 has
several implications: (1) The anomalous properties of He-4 can be accounted for
by allowing defects to freeze out at lowest temperatures. The dynamics of solid
He-4 is governed by glasslike (glassy) relaxation processes and the
distribution of relaxation times varies significantly between different
torsional oscillator, shear modulus, and dielectric function experiments. (2)
Any defect freeze-out will be accompanied by thermodynamic signatures
consistent with entropy contributions from defects. It follows that such
entropy contribution is much smaller than the required superfluid fraction, yet
it is sufficient to account for excess entropy at lowest temperatures. (3) We
predict a Cole-Cole type relation between the real and imaginary part of the
response functions for rotational and planar shear that is occurring due to the
dynamics of defects. Similar results apply for other response functions. (4)
Using the framework of glassy dynamics, we predict low-frequency yet to be
measured electro-elastic features in defect rich He-4 crystals. These
predictions allow one to directly test the ideas and very presence of glassy
contributions in He-4.Comment: 33 pages, 13 figure
Threshold Electrodisintegration of ^3He
Cross sections were measured for the near-threshold electrodisintegration of
^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and
prior measurements the transverse and longitudinal response functions R_T and
R_L were deduced. Comparisons are made against previously published and new
non-relativistic A=3 calculations using the best available NN potentials. In
general, for q<2 fm^{-1} these calculations accurately predict the threshold
electrodisintegration of ^3He. Agreement at increasing q demands consideration
of two-body terms, but discrepancies still appear at the highest momentum
transfers probed, perhaps due to the neglect of relativistic dynamics, or to
the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review
Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein
Antibodies are a principal determinant of immunity for most RNA viruses and have promise to reduce infection or disease during major epidemics. The novel coronavirus SARS-CoV-2 has caused a global pandemic with millions of infections and hundreds of thousands of deaths to date1,2. In response, we used a rapid antibody discovery platform to isolate hundreds of human monoclonal antibodies (mAbs) against the SARS-CoV-2 spike (S) protein. We stratify these mAbs into five major classes on the basis of their reactivity to subdomains of S protein as well as their cross-reactivity to SARS-CoV. Many of these mAbs inhibit infection of authentic SARS-CoV-2 virus, with most neutralizing mAbs recognizing the receptor-binding domain (RBD) of S. This work defines sites of vulnerability on SARS-CoV-2 S and demonstrates the speed and robustness of advanced antibody discovery platforms
- âŠ