250 research outputs found

    Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems

    Get PDF
    Ā© 2017 The Royal Society of Chemistry. This is an Open Access article, distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence https://creativecommons.org/licenses/by/3.0/.Among Lab-on-a-chip techniques, Digital microfluidics (DMF), allowing the precise actuation of discrete droplets, is a highly promising, flexible, biochemical assay platform for biomedical and bio-detection applications. However the durability of DMF systems remains a challenge due to biofouling of the droplet-actuating surface when high concentrations of biomolecules are employed. To address this issue, the use of superhydrophobic materials as the actuating surface in DMF devices is examined. The change in contact angle by electrowetting of deionised water and ovalbumin protein samples is characterised on different surfaces (hydrophobic and superhydrophobic). Ovalbumin droplets at 1 mg ml-1 concentration display better electrowetting reversibility on NeverwetĀ®, a commercial superhydrophobic material, than on CytopĀ®, a typical DMF hydrophobic material. Biofouling rate, characterised by roll-off angle measurement of ovalbumin loaded droplets and further confirmed by measurements of the mean fluorescence intensity of labelled fibrinogen, appears greatly reduced on NeverwetĀ®. Transportation of protein laden droplets (fibrinogen at concentration 0.1 mg ml-1 and ovalbumin at concentration 1 mg ml-1 and 10 mg ml-1) is successfully demonstrated using electrowetting actuation on both single-plate and parallel-plate configurations with performance comparable to that of DI water actuation. In addition, although droplet splitting requires further attention, merging and efficient mixing are demonstrated.Peer reviewe

    Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens

    Get PDF
    Recent serious outbreaks of pathogens such as Chalara Fraxinea, (Ash Dieback) demonstrate the vulnerability of UKā€™s forests, woods, and trees. Early detection of threats is critical in the fight against such tree pests and pathogens. This requires a process for collecting and analysing the spores which is robust, flexible and can be deployed rapidly, but which also has sufficient sensitivity to detect the earliest precursors. The work presented here describes a newly-developed high-efficiency detection apparatus and is part of an ongoing BBRSC project to improve the UKā€™s biosecurity. Our automatic spore system is capable of collecting and analysing Chalara Fraxinea using a novel cyclonic pathogen collector. Cyclones are an effective way to separate small particles (spores) from large quantities of surrounding air and store them for analysis. Our system incorporates a purpose-designed high efficiency cyclone directly integrated with a low power custom impeller to maximise volumetric air sampling while minimising the power requirement. 3D printing was used extensively to validate theoretical models and the particle collection and retention capability of this series of prototypes was evaluated experimentally within our Aerosol test chamber. We found that we could collect greater than 90% of particulate in the target size range, thus providing a front-end to a detection platform. Our system is capable of operating autonomously and at low power, with a high sensitivity to ambient particles. The final system design incorporates the use of multiple cyclone storage vessels ensuring complete isolation of each sample, eradicating cross-contamination, and facilitating automated handling of the sample inside the same apparatus. COTS ā€“ commercial off the shelf components were incorporated into the cyclone to make a series of cost effective collection vessels. Early collection and detection of pathogens in-situ represents a considerable advance in surveillance and monitoring of pathogens strengthening UK biosecurity for the future

    Development of an automated smart trap for wheat pathogens

    Get PDF
    National surveys show fungicide use on wheat continues to increase despite fluctuations in disease pressure, reaching a 30 year high in 2012 (Defra). Septoria tritici is the most significant foliar disease in UK wheat causing between Ā£43M to Ā£53M in yield losses annually; Yellow and brown rust are more sporadic but have caused significant losses during high disease years. In all cases control is by fungicide application costing Ā£82M annually (GFK Kynetec 2013). Effective disease management relies on either prophylactic pesticide use or significant manual intervention and time consuming assessment of crop disease indicators by farmers and agronomists. Furthermore indications are that current levels of pesticide use could lead to increased risk of pesticide resistance, if this should occur it is estimated that wheat yields could reduce by up to 20%. To address this we have developed a prototype integrated and automated spore detection system, designed for unattended field application, to monitor and identify the presence of Septoria, brown and yellow rust. The prototype system incorporates novel cyclonic pathogen collection, on-board sample processing and isothermal DNA amplification chemistry (LAMP). We present the engineering design, optimisation and evaluation of our prototype system reporting on successfully completed laboratory testing and initial field trial results. This prototype will be the basis for the development of a commercially available system which, in addition to inoculum detection, will be capable of providing growers/agronomists with real-time information on inoculum moving into a crop enabling more effective timing and selection of fungicide application, and thus better control, increased yield, and improved environmental stewardship

    Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems

    Get PDF
    Among Lab-on-a-chip techniques, digital microfluidics (DMF), allowing the precise actuation of discrete droplets, is a highly promising, flexible, biochemical assay platform for biomedical and bio-detection applications. However the durability of DMF systems remains a challenge due to biofouling of the droplet-actuating surface when high concentrations of biomolecules are employed. To address this issue, the use of superhydrophobic materials as the actuating surface in DMF devices is examined. The change in contact angle by electrowetting of deionised water and ovalbumin protein samples is characterised on different surfaces (hydrophobic and superhydrophobic). Ovalbumin droplets at 1 mg mlāˆ’1 concentration display better electrowetting reversibility on NeverwetĀ®, a commercial superhydrophobic material, than on CytopĀ®, a typical DMF hydrophobic material. Biofouling rate, characterised by roll-off angle measurement of ovalbumin loaded droplets and further confirmed by measurements of the mean fluorescence intensity of labelled fibrinogen, appears greatly reduced on NeverwetĀ®. Transportation of protein laden droplets (fibrinogen at concentration 0.1 mg mlāˆ’1 and ovalbumin at concentration 1 mg mlāˆ’1 and 10 mg mlāˆ’1) is successfully demonstrated using electrowetting actuation on both single-plate and parallel-plate configurations with performance comparable to that of DI water actuation. In addition, although droplet splitting requires further attention, merging and efficient mixing are demonstrated

    Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens

    Get PDF
    Recent serious outbreaks of pathogens such as Chalara Fraxinea, (Ash Dieback) demonstrate the vulnerability of UKā€™s forests, woods, and trees. Early detection of threats is critical in the fight against such tree pests and pathogens. This requires a process for collecting and analysing the spores which is robust, flexible and can be deployed rapidly, but which also has sufficient sensitivity to detect the earliest precursors. The work presented here describes a newly-developed high-efficiency detection apparatus and is part of an ongoing BBRSC project to improve the UKā€™s biosecurity. Our automatic spore system is capable of collecting and analysing Chalara Fraxinea using a novel cyclonic pathogen collector. Cyclones are an effective way to separate small particles (spores) from large quantities of surrounding air and store them for analysis. Our system incorporates a purpose-designed high efficiency cyclone directly integrated with a low power custom impeller to maximise volumetric air sampling while minimising the power requirement. 3D printing was used extensively to validate theoretical models and the particle collection and retention capability of this series of prototypes was evaluated experimentally within our Aerosol test chamber. We found that we could collect greater than 90% of particulate in the target size range, thus providing a front-end to a detection platform. Our system is capable of operating autonomously and at low power, with a high sensitivity to ambient particles. The final system design incorporates the use of multiple cyclone storage vessels ensuring complete isolation of each sample, eradicating cross-contamination, and facilitating automated handling of the sample inside the same apparatus. COTS ā€“ commercial off the shelf components were incorporated into the cyclone to make a series of cost effective collection vessels. Early collection and detection of pathogens in-situ represents a considerable advance in surveillance and monitoring of pathogens strengthening UK biosecurity for the future.Non peer reviewe

    Development of an automated smart trap for wheat pathogens

    Get PDF
    National surveys show fungicide use on wheat continues to increase despite fluctuations in disease pressure, reaching a 30 year high in 2012 (Defra). Septoria tritici is the most significant foliar disease in UK wheat causing between Ā£43M to Ā£53M in yield losses annually; Yellow and brown rust are more sporadic but have caused significant losses during high disease years. In all cases control is by fungicide application costing Ā£82M annually (GFK Kynetec 2013). Effective disease management relies on either prophylactic pesticide use or significant manual intervention and time consuming assessment of crop disease indicators by farmers and agronomists. Furthermore indications are that current levels of pesticide use could lead to increased risk of pesticide resistance, if this should occur it is estimated that wheat yields could reduce by up to 20%. To address this we have developed a prototype integrated and automated spore detection system, designed for unattended field application, to monitor and identify the presence of Septoria, brown and yellow rust. The prototype system incorporates novel cyclonic pathogen collection, on-board sample processing and isothermal DNA amplification chemistry (LAMP). We present the engineering design, optimisation and evaluation of our prototype system reporting on successfully completed laboratory testing and initial field trial results. This prototype will be the basis for the development of a commercially available system which, in addition to inoculum detection, will be capable of providing growers/agronomists with real-time information on inoculum moving into a crop enabling more effective timing and selection of fungicide application, and thus better control, increased yield, and improved environmental stewardship.Peer reviewe

    Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection

    Get PDF
    SummaryThe interleukin-1 receptor I (IL-1RI) is critical for host resistance to Mycobacterium tuberculosis (Mtb), yet the mechanisms of IL-1RI-mediated pathogen control remain unclear. Here, we show that without IL-1RI, Mtb-infected newly recruited Ly6Ghi myeloid cells failed to upregulate tumor necrosis factor receptor I (TNF-RI) and to produce reactive oxygen species, resulting in compromised pathogen control. Furthermore, simultaneous ablation of IL-1RI and TNF-RI signaling on either stroma or hematopoietic cells led to early lethality, indicating non-redundant and synergistic roles of IL-1 and TNF in mediating macrophage-stroma cross-talk that was critical for optimal control of Mtb infection. Finally, we show that even in the presence of functional Mtb-specific adaptive immunity, the lack of IL-1Ī± and not IL-1Ī² led to an exuberant intracellular pathogen replication and progressive non-resolving inflammation. Our study reveals functional interdependence between IL-1 and TNF in enabling Mtb control mechanisms that are critical for host survival

    Germline CDH1 mutations are a significant contributor to the high frequency of early-onset diffuse gastric cancer cases in New Zealand Māori.

    Get PDF
    New Zealand Māori have a considerably higher incidence of gastric cancer compared to non-Māori, and are one of the few populations worldwide with a higher prevalence of diffuse-type disease. Pathogenic germline CDH1 mutations are causative of hereditary diffuse gastric cancer, a cancer predisposition syndrome primarily characterised by an extreme lifetime risk of developing diffuse gastric cancer. Pathogenic CDH1 mutations are well described in Māori families in New Zealand. However, the contribution of these mutations to the high incidence of gastric cancer is unknown. We have used next-generation sequencing, Sanger sequencing, and Multiplex Ligation-dependent Probe Amplification to examine germline CDH1 in an unselected series of 94 Māori gastric cancer patients and 200 healthy matched controls. Overall, 18% of all cases, 34% of cases diagnosed with diffuse-type gastric cancer, and 67% of cases diagnosed aged less than 45Ā years carried pathogenic CDH1 mutations. After adjusting for the effect of screening known HDGC families, we estimate that 6% of all advanced gastric cancers and 13% of all advanced diffuse-type gastric cancers would carry germline CDH1 mutations. Our results demonstrate that germline CDH1 mutations are a significant contributor to the high frequency of diffuse gastric cancer in New Zealand Māori

    Career orientations and career cultures : individual and organisational approaches to beginning teachersā€™ careers

    Get PDF
    Despite the very large literature on teacher careers from an individual perspective, there is relatively little that links the perspectives of teachers themselves to how schools as organisations approach careers. The aim of this paper is, first, to outline how teachersā€™ orientations towards careers change across three dimensions, and, second, to examine how schools as organisations deal with career, developing a model of organisational responses, including developing a concept of ā€˜career cultureā€™, derived from an analysis of interviews regarding the first three years of teaching conducted with senior leaders and second year teachers themselves. By considering the fit between individualsā€™ career orientations and school career cultures, the paper surfaces both the fluid nature of these orientations and the subsequent potential instability of the fit
    • ā€¦
    corecore