602 research outputs found
Recommended from our members
Using small molecule probes to investigate aggregation of sunset yellow FCF: what are the concentration limits?
The assembly of small molecules into larger structures, often driven by non-covalent interactions such as hydrogen-bonding, aromatic stacking interactions and burial of hydrophobic surface, is of wide spread interest. The interaction of small molecules with aggregates also has a large range of application from fluorescence aggregation assays to gas storage in framework materials. Here we utilise nuclear magnetic resonance spectroscopy to investigate the interaction of a small molecule probe on the assembly state of sunset yellow across a wide range of relative concentrations. Information from both macroscopic (diffusion) and microscopic (chemical shifts) measurements allows the interaction to be studied and the binding mode to be interrogated. Using fluorophenol as the small molecule probe, we show that the aggregation behaviour of sunset yellow is broadly unaffected by the relative amount of fluorophenol added
Underwater Spectroscopic Techniques for In-situ Nuclear Waste Characterisation
Decommissioning legacy spent fuel ponds within nuclear facilities can be a complicated process, largely in part due to the unknown state of materials deposited into such storage ponds during the operational lifetime of the facility. Materials may have corroded, and their condition deteriorated. Due to the nature of the materials deposited in such storage sites, minimising disturbance is desirable, and as such non-destructive techniques such as optical analysis methods are preferred over destructive techniques. In this work, we demonstrate three such optical techniques (Raman spectroscopy, photogrammetry, and hyperspectral imaging) capable of ascertaining useful characteristics of objects such as material type, surface corrosion, degradation, and 3D structure. A pool environment was used to capture data and demonstrate the techniques suitability for use in nuclear waste characterization in active spent fuel ponds. The optical techniques used enabled material characteristics to be obtained
Electrical Manipulation of Telecom Color Centers in Silicon
Silicon color centers have recently emerged as promising candidates for
commercial quantum technology, yet their interaction with electric fields has
yet to be investigated. In this paper, we demonstrate electrical manipulation
of telecom silicon color centers by fabricating lateral electrical diodes with
an integrated G center ensemble in a commercial silicon on insulator wafer. The
ensemble optical response is characterized under application of a
reverse-biased DC electric field, observing both 100% modulation of
fluorescence signal, and wavelength redshift of approximately 1.4 GHz/V above a
threshold voltage. Finally, we use G center fluorescence to directly image the
electric field distribution within the devices, obtaining insight into the
spatial and voltage-dependent variation of the junction depletion region and
the associated mediating effects on the ensemble. Strong correlation between
emitter-field coupling and generated photocurrent is observed. Our
demonstration enables electrical control and stabilization of semiconductor
quantum emitters
Aprotinin inhibits proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1
ObjectiveThrombin is generated in significant quantities during cardiopulmonary bypass and mediates adverse events, such as platelet aggregation and proinflammatory responses, through activation of the high-affinity thrombin receptor protease-activated receptor 1, which is expressed on platelets and endothelium. Thus antagonism of protease-activated receptor 1 might have broad therapeutic significance. Aprotinin, used clinically to reduce transfusion requirements and the inflammatory response to bypass, has been shown to inhibit protease-activated receptor 1 on platelets in vitro and in vivo. Here we have examined whether aprotinin inhibits endothelial protease-activated receptor 1 activation and resulting proinflammatory responses induced by thrombin.MethodsProtease-activated receptor 1 expression and function were examined in cultured human umbilical vein endothelial cells after treatment with α-thrombin at 0.02 to 0.15 U/mL in the presence or absence of aprotinin (200-1600 kallikrein inhibitory units/mL). Protease-activated receptor 1 activation was assessed by using an antibody, SPAN-12, which detects only the unactivated receptor, and thrombin-mediated calcium fluxes. Other thrombin-dependent inflammatory pathways investigated were phosphorylation of the p42/44 mitogen-activated protein kinase, upregulation of the early growth response 1 transcription factor, and production of the proinflammatory cytokine interleukin 6.ResultsPretreatment of cultured endothelial cells with aprotinin significantly spared protease-activated receptor 1 receptor cleavage (P < .0001) and abrogated calcium fluxes caused by thrombin. Aprotinin inhibited intracellular signaling through p42/44 mitogen-activated protein kinase (P < .05) and early growth response 1 transcription factor (P < .05), as well as interleukin 6 secretion caused by thrombin (P < .005).ConclusionsThis study demonstrates that endothelial cell activation by thrombin and downstream inflammatory responses can be inhibited by aprotinin in vitro through blockade of protease-activated receptor 1. Our results provide a new molecular basis to help explain the anti-inflammatory properties of aprotinin reported clinically
Phasic Nucleus Accumbens Dopamine Encodes Risk-Based Decision-Making Behavior
To optimize behavior organisms evaluate the risks and benefits of available choices. The mesolimbic dopamine (DA) system encodes information about response costs and reward delays that bias choices. However, it remains unclear whether subjective value associated with risk-taking behavior is encoded by DA release
NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol
The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
Thin film solar cell inflatable ultraviolet rigidizable deployment hinge
A flexible inflatable hinge includes curable resin for rigidly positioning panels of solar cells about the hinge in which wrap around contacts and flex circuits are disposed for routing power from the solar cells to the power bus further used for grounding the hinge. An indium tin oxide and magnesium fluoride coating is used to prevent static discharge while being transparent to ultraviolet light that cures the embedded resin after deployment for rigidizing the inflatable hinge
Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud product, we evaluate how well the Met Office Unified Model (UM) and the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a 4-week observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions was measured. Three different cloud schemes were tested within a nested limited-area model (LAM) configuration of the UM – two regionally operational single-moment schemes (UM_RA2M and UM_RA2T) and one novel double-moment scheme (UM_CASIM-100) – while one global simulation was conducted with the IFS, utilising its default cloud scheme (ECMWF_IFS).
Consistent weaknesses were identified across both models, with both the UM and IFS overestimating cloud occurrence below 3 km. This overestimation was also consistent across the three cloud configurations used within the UM framework, with >90 % mean cloud occurrence simulated between 0.15 and 1 km in all the model simulations. However, the cloud microphysical structure, on average, was modelled reasonably well in each simulation, with the cloud liquid water content (LWC) and ice water content (IWC) comparing well with observations over much of the vertical profile. The key microphysical discrepancy between the models and observations was in the LWC between 1 and 3 km, where most simulations (all except UM_RA2T) overestimated the observed LWC.
Despite this reasonable performance in cloud physical structure, both models failed to adequately capture cloud-free episodes: this consistency in cloud cover likely contributes to the ever-present near-surface temperature bias in every simulation. Both models also consistently exhibited temperature and moisture biases below 3 km, with particularly strong cold biases coinciding with the overabundant modelled cloud layers. These biases are likely due to too much cloud-top radiative cooling from these persistent modelled cloud layers and were consistent across the three UM configurations tested, despite differences in their parameterisations of cloud on a sub-grid scale. Alarmingly, our findings suggest that these biases in the regional model were inherited from the global model, driving a cause–effect relationship between the excessive low-altitude cloudiness and the coincident cold bias. Using representative cloud condensation nuclei concentrations in our double-moment UM configuration while improving cloud microphysical structure does little to alleviate these biases; therefore, no matter how comprehensive we make the cloud physics in the nested LAM configuration used here, its cloud and thermodynamic structure will continue to be overwhelmingly biased by the meteorological conditions of its driving model
- …