781 research outputs found

    Intensive HST survey for z > 1 type Ia supernovae by targeting galaxy clusters

    Get PDF
    ManuscriptWe present a new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 0.95, nine of which were in galaxy clusters. This strategy provides a SN sample that can be used to decouple the effects of host galaxy extinction and intrinsic color in high redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology

    Radiation tolerance of fully-depleted P-channel CCDs designed for the SNAP satellite

    Get PDF
    Journal ArticleThick, fully depleted p-channel charge-coupled devices (CCDs) have been developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have several advantages over conventional thin, n-channel CCDs, including enhanced quantum efficiency and reduced fringing at near-infrared wavelengths and improved radiation tolerance. Here we report results from the irradiation of CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron and with 0.1-1 MeV electrons at the LBNL 60Co source. These studies indicate that the LBNL CCDs perform well after irradiation, even in the parameters in which significant degradation is observed in other CCDs: charge transfer efficiency, dark current, and isolated hot pixels. Modeling the radiation exposure over a six-year mission lifetime with no annealing, we expect an increase in dark current of 20 e /pixel/hr, and a degradation of charge transfer efficiency in the parallel direction of 3 10 6 and 1 10 6 in the serial direction. The dark current is observed to improve with an annealing cycle, while the parallel CTE is relatively unaffected and the serial CTE is somewhat degraded. As expected, the radiation tolerance of the p-channel LBNL CCDs is significantly improved over the conventional n-channel CCDs that are currently employed in space-based telescopes such as the Hubble Space Telescope

    The effects of charge transfer inefficiency (CTI) on galaxy shape measurements

    Get PDF
    ManuscriptWe examine the effects of charge transfer inefficiency (CTI) during CCD readout on the demanding galaxy shape measurements required by studies of weak gravitational lensing. We simulate a CCD readout with CTI such as that caused by charged particle radiation damage in space-based detectors. We verify our simulations on real data from fully-depleted p-channel CCDs that have been deliberately irradiated in a laboratory. We show that only charge traps with time constants of the same order as the time between row transfers during readout affect galaxy shape measurements. We simulate deep astronomical images and the process of CCD readout, characterizing the effects of CTI on various galaxy populations. Our code and methods are general and can be applied to any CCDs, once the density and characteristic release times of their charge trap species are known. We baseline our study around p-channel CCDs that have been shown to have charge transfer efficiency up to an order of magnitude better than several models of n-channel CCDs designed for space applications. We predict that for galaxies furthest from the readout registers, bias in the measurement of galaxy shapes, ?e, will increase at a rate of (2.65? 0.02)? 10?4yr?1 at L2 for accumulated radiation exposure averaged over the solar cycle. If uncorrected, this will consume the entire shape measurement error budget of a dark energy mission surveying the entire extragalactic sky within about 4 years of accumulated radiation damage. However, software mitigation techniques demonstrated elsewhere can reduce this by a factor of ~10, bringing the effect well below mission requirements. This conclusion is valid only for the p-channel CCDs we have modeled; CCDs with higher CTI will fare worse and may not meet the requirements of future dark energy missions. We also discuss additional ways in which hardware could be designed to further minimize the impact of CTI

    CCD testing and characterization for dark energy survey

    Get PDF
    Journal ArticleA description of the plans and infrastructure developed for CCD testing and characterization for the DES focal plane detectors is presented. Examples of the results obtained are shown and discussed in the context of the device requirements for the survey instrument

    Subaru FOCAS spectroscopic observations of high-redshift supernovae

    Get PDF
    Journal ArticleWe present spectra of high-redshift supernovae (SNe) that were taken with the Subaru low-resolution optical spectrograph, FOCAS. These SNe were found in SN surveys with Suprime-Cam on Subaru, the CFH12k camera on the Canada-France-Hawaii Telescope, and the Advanced Camera for Surveys on the Hubble Space Telescope. These SN surveys specifically targeted z > 1 Type Ia supernovae (SNe Ia). From the spectra of 39 candidates, we obtained redshifts for 32 candidates and spectroscopically identified 7 active candidates as probable SNe Ia, including one at z = 1.35, which is the most distant SN Ia to be spectroscopically confirmed with a ground-based telescope. An additional 4 candidates were identified as likely SNe Ia from the spectrophotometric properties of their host galaxies. Seven candidates are not SNe Ia, either being SNe of another type or active galactic nuclei. When SNe Ia were observed within one week of the maximum light, we found that we could spectroscopically identify most of them up to z = 1.1. Beyond this redshift, very few candidates were spectroscopically identified as SNe Ia. The current generation of super red-sensitive, fringe-free CCDs will push this redshift limit higher

    Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1

    Get PDF
    Journal ArticleThe galaxy cluster XMMU J2235.3βˆ’2557 (hereafter XMM2235), spectroscopically confirmed at z = 1.39, is one of the most distant X-ray selected galaxy clusters. It has been at the center of a multi-wavelength observing campaign with ground and space facilities. Aims. We characterize the galaxy populations of passive members, the thermodynamical properties and metal abundance of the hot gas, and the total mass of the system using imaging data with HST/ACS (i775 and z850 bands) and VLT/ISAAC (J and KS bands), extensive spectroscopic data obtained with VLT/FORS2, and deep (196 ks) Chandra observations. Methods. Chandra data allow temperature and metallicity to be measured with good accuracy and the X-ray surface brightness profile to be traced out to 1' (or 500 kpc), thus allowing the mass to be reliably estimated. Out of a total sample of 34 spectroscopically confirmed cluster members, we selected 16 passive galaxies (without detectable [OII]) within the central 2' (or 1 Mpc) with ACS coverage, and inferred star formation histories for subsamples of galaxies inside and outside the core by modeling their spectrophotometric data with spectral synthesis models. Results. Chandra data show a regular elongated morphology, closely resembling the distribution of core galaxies, with a significant cool core. We measure a global X-ray temperature of kT = 8.6+1.3 βˆ’1.2 keV (68% confidence), which we find to be robust against several systematics involved in the X-ray spectral analysis. By detecting the rest frame 6.7 keV Iron K line in the Chandra spectrum, we measure a metallicity Z = 0.26+0.20 βˆ’0.16 Zo. In the likely hypothesis of hydrostatic equilibrium, we obtain a total mass of Mtot( 1, with a baryonic content, both its galaxy population and intracluster gas, in a significantly advanced evolutionary stage at 1/3 of the current age of the Universe

    Masses of high-redshift clusters via SZ effect observations

    Get PDF
    Journal ArticleWe present Sunyaev-Zel'dovich Effect (SZE) observations of distant, highly X-ray luminous clusters of galaxies. We use the SZE data to constrain their total masses, independent of X-ray observations. To do this, we assume the clusters have the same gas mass fraction as that derived from SZE measurements of a sample of known massive clusters, and then infer each cluster's mass from its SZE data. In the systems with published X-ray temperatures, we find good agreement between our SZE-derived temperatures and those inferred from X-ray spectroscopy; in the system without X-ray derived temperatures, the SZE data provide the first confirmation that it is indeed a massive system. The abundance of clusters at high redshift is critically sensitive to the values of the cosmological parameters and so the demonstrated ability to determine cluster temperatures and masses from SZE observations independent of X-ray data illustrates the power of using deep SZE surveys to probe the distant universe

    Radiation tolerance of high-resistivity LBNL CCDs

    Get PDF
    Journal ArticleThick, fully-depleted p-channel charge-coupled devices (CCDs) have been developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have several advantages over conventional n-channel CCDs, including enhanced quantum efficiency and reduced fringing at near-infrared wavelengths, a small point spread function, and improved radiation tolerance. Here we report results from the irradiation of CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron. These studies indicate that the CCDs still perform well after irradiation, even in the parameters in which significant degradation is expected: charge transfer efficiency, dark current, and isolated hot pixels. As expected, the radiation tolerance of the LBNL CCDs is significantly improved over conventional n-channel CCDs currently employed in space-based telescopes such as the Hubble Space Telescope (HST)

    The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data

    Get PDF
    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d_A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 2.1; these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS
    • …
    corecore