4 research outputs found
Recommended from our members
Diurnal variation of the potassium layer in the upper atmosphere
Measurements of the diurnal cycle of potassium (K) atoms between 80 and 110 km have been made during October (for the years 2004–2011) using a Doppler lidar at Kühlungsborn, Germany (54.1°N, 11.7°E). A pronounced diurnal variation is observed in the K number density, which is explored by using a detailed description of the neutral and ionized chemistry of K in a three-dimensional chemistry climate model. The model captures both the amplitude and phase of the diurnal and semidiurnal variability of the layer, although the peak diurnal amplitude around 90 km is overestimated. The model shows that the total potassium density (≈ K + K+ + KHCO3) exhibits little diurnal variation at each altitude, and the diurnal variations are largely driven by photochemical conversion between these reservoir species. In contrast, tidally driven vertical transport has a small effect at this midlatitude location, and diurnal fluctuations in temperature are of little significance because they are small and the chemistry of K is relatively temperature independent
Recommended from our members
First global observations of the mesospheric potassium layer
Metal species, produced by meteoric ablation, act as useful tracers of upper atmosphere dynamics and chemistry. Of these meteoric metals, K is an enigma: at extratropical latitudes, limited available lidar data show that the K layer displays a semiannual seasonal variability, rather than the annual pattern seen in other metals such as Na and Fe. Here we present the first near-global K retrieval, where K atom number density profiles are derived from dayglow measurements made by the Optical Spectrograph and Infrared Imager System spectrometer on board the Odin satellite. This robust retrieval produces density profiles with typical layer peak errors of ±15% and a 2km vertical grid resolution. We demonstrate that these retrieved profiles compare well with available lidar data and show for the first time that the unusual semiannual behavior is near-global in extent. This new data set has wider applications for improving understanding of the K chemistry and of related upper atmosphere processes. Key Points First quantitative retrieval of the terrestrial K layer from space The unusual semiannual behavior of K is near global in extent
A novel methodology to estimate pre-atmospheric dynamical conditions of small meteoroids
Recent observations using the Wind and Ulysses spacecrafts and the Solar Occultation For Ice Experiment (SOFIE) during the period between 2007 and 2020 indicate a total cosmic dust influx at Earth ranging from 22 to 32 tonnes per day. Much is still unclear about the formation, evolution, and propagation of this cosmic dust throughout our Solar System, as well as the transport and chemical interaction of such particles within our own atmosphere. Studying meteoroids, which are particles small and fast enough to ablate in the Earth’s upper atmosphere producing meteor plasma detectable by meteor radars, offers an opportunity to better understand these processes. While meteor radars provide a powerful tool to detect meteoroids, they are limited to detecting particles that produce a sufficient amount of plasma within the instrument’s field-of-view, and thus most of their trajectory remains undetected. In this work, we report a novel methodology, using new polarization measurements as well as two state-of-the art models, to determine the pre-atmosphere dynamical characteristics of the detected particles, before they suffer any significant ablation or deceleration. We present the results for 20 meteor detection case studies, and find that for the majority of particles, at least 80% (typically 95%) of the particle mass has already been lost at the time of detection. In addition, while all particles experienced deceleration by the time of detection, this was typically small (≤ 4% of their initial velocity). Future work will implement this new methodology to automatically determine the initial mass and velocities of individual meteors. This will help provide more precise meteor orbits and characterization of parent source populations, as well as the identification of potential interstellar particles
Solar Cycle and Long‐Term Trends in the Observed Peak of the Meteor Altitude Distributions by Meteor Radars
The mesosphere/lower thermosphere (MLT, 80–100 km) region is an important boundary between Earth's atmosphere below and space above and may act as a sensitive indicator for anthropogenic climate change. Existing observational and modeling studies have shown the middle atmosphere and the MLT is cooling and contracting because of increasing greenhouse gas emissions. However, trend analyses are highly sensitive to the time periods covered, their length, and the measurement type and methodology used. We present for the first time the linear and 11-year solar cycle responses in the meteor ablation altitude distributions observed by 12 meteor radars at different locations. Decreasing altitudes were seen at all latitudes (linear trends varying from −10.97 to −817.95 m dec−1), and a positive correlation with solar activity was seen for most locations. The divergence of responses at high latitudes indicates an important and complex interplay between atmospheric changes and dynamics at varying time scales