31 research outputs found

    Conditional generation of sub-Poissonian light from two-mode squeezed vacuum via balanced homodyne detection on idler mode

    Get PDF
    A simple scheme for conditional generation of nonclassical light with sub-Poissonian photon-number statistics is proposed. The method utilizes entanglement of signal and idler modes in two-mode squeezed vacuum state generated in optical parametric amplifier. A quadrature component of the idler mode is measured in balanced homodyne detector and only those experimental runs where the absolute value of the measured quadrature is higher than certain threshold are accepted. If the threshold is large enough then the conditional output state of signal mode exhibits reduction of photon-number fluctuations below the coherent-state level.Comment: 7 pages, 6 figures, REVTe

    Constraints and entropy in a model of network evolution

    Get PDF
    Barab´asi-Albert’s ‘Scale Free’ model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the ‘Scale Free’ model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the ‘Scale Free’ and ‘constraints’ model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics

    Ytterbium-doped silica fibre lasers: versatile sources for the 1-1.2µm region

    No full text
    Ytterbium-doped silica fibers exhibit very broad absorption and emission bands, from ~800 nm to ~1064 nm for absorption and ~970 nm to ~1200 nm for emission. The simplicity of the level structure provides freedom from unwanted processes such as excited state absorption, multiphonon nonradiative decay, and concentration quenching. These fiber lasers therefore offer a very efficient and convenient means of wavelength conversion from a wide variety of pump lasers, including AlGaAs and InGaAs diodes and Nd:YAG lasers. Efficient operation with narrow linewidth at any wavelength in the emission range can be conveniently achieved using fiber gratings. A wide range of application for these sources can he anticipated. In this paper, the capabilities of this versatile source are reviewed. Analytical procedures and numerical data are presented to enable design choices to be made for the wide range of operating conditions
    corecore