2,914 research outputs found
Status of vaccine research and development of vaccines for Nipah virus
AbstractNipah virus (NiV) is a highly pathogenic, recently emerged paramyxovirus that has been responsible for sporadic outbreaks of respiratory and encephalitic disease in Southeast Asia. High case fatality rates have also been associated with recent outbreaks in Malaysia and Bangladesh. Although over two billion people currently live in regions in which NiV is endemic or in which the Pteropus fruit bat reservoir is commonly found, there is no approved vaccine to protect against NiV disease. This report examines the feasibility and current efforts to develop a NiV vaccine including potential hurdles for technical and regulatory assessment of candidate vaccines and the likelihood for financing
Poor specificity of National Early Warning Score (NEWS) in spinal cord injuries (SCI) population: A retrospective cohort study
Study design. Retrospective chart audit. Objectives. The National Early Warning Score (NEWS) is based on seven physiological parameters which can be altered in some individuals with spinal cord injuries (SCI). The aim was to start the development of adapted NEWS suitable for SCI population. The objective was to determine the SBP NEWS specificity based on neurological level of injury (NLI) and completeness of injury. Setting. Tertiary centre in the UK. Methods. Adult patients admitted for the first time to the National Spinal Injuries Centre between 1 January 2015 and 31 December 2016 were included if they were >6 months post injury. Data were extracted retrospectively including the last ten consecutive BP and heart rate readings before discharge. Data were analysed based on different AIS grades, completeness of injury and NLI. Results. One hundred and ninety one patients were admitted in 2015 and 2016 and 142 patients were included in the primary analysis. The mean SBP ranged between 92 and 151 mmHg. Patients with the NLI of T6 and above (≥T6) motor complete lesions had a significantly lower SBP than motor incomplete lesions. The specificity of the SBP NEWS was 35.3% in ≥T6 motor complete individuals versus 80.3% in ≥T6 motor incomplete individuals. Conclusion. The baseline BP is significantly lower in the ≥T6 motor complete SCI individuals (>6 months post injury) resulting in a very low specificity of 35.3% to SBP NEWS, which could lead to mismatch between clinical deterioration and NEWS resulting in lack of timely clinical response
Deep learning cardiac motion analysis for human survival prediction
Motion analysis is used in computer vision to understand the behaviour of
moving objects in sequences of images. Optimising the interpretation of dynamic
biological systems requires accurate and precise motion tracking as well as
efficient representations of high-dimensional motion trajectories so that these
can be used for prediction tasks. Here we use image sequences of the heart,
acquired using cardiac magnetic resonance imaging, to create time-resolved
three-dimensional segmentations using a fully convolutional network trained on
anatomical shape priors. This dense motion model formed the input to a
supervised denoising autoencoder (4Dsurvival), which is a hybrid network
consisting of an autoencoder that learns a task-specific latent code
representation trained on observed outcome data, yielding a latent
representation optimised for survival prediction. To handle right-censored
survival outcomes, our network used a Cox partial likelihood loss function. In
a study of 302 patients the predictive accuracy (quantified by Harrell's
C-index) was significantly higher (p < .0001) for our model C=0.73 (95 CI:
0.68 - 0.78) than the human benchmark of C=0.59 (95 CI: 0.53 - 0.65). This
work demonstrates how a complex computer vision task using high-dimensional
medical image data can efficiently predict human survival
Resonance bifurcations from robust homoclinic cycles
We present two calculations for a class of robust homoclinic cycles with
symmetry Z_n x Z_2^n, for which the sufficient conditions for asymptotic
stability given by Krupa and Melbourne are not optimal.
Firstly, we compute optimal conditions for asymptotic stability using
transition matrix techniques which make explicit use of the geometry of the
group action.
Secondly, through an explicit computation of the global parts of the Poincare
map near the cycle we show that, generically, the resonance bifurcations from
the cycles are supercritical: a unique branch of asymptotically stable period
orbits emerges from the resonance bifurcation and exists for coefficient values
where the cycle has lost stability. This calculation is the first to explicitly
compute the criticality of a resonance bifurcation, and answers a conjecture of
Field and Swift in a particular limiting case. Moreover, we are able to obtain
an asymptotically-correct analytic expression for the period of the bifurcating
orbit, with no adjustable parameters, which has not proved possible previously.
We show that the asymptotic analysis compares very favourably with numerical
results.Comment: 24 pages, 3 figures, submitted to Nonlinearit
Stability of narrow beams in bulk Kerr-type nonlinear media
We consider (2+1)-dimensional beams, whose transverse size may be comparable
to or smaller than the carrier wavelength, on the basis of an extended version
of the nonlinear Schr\"{o}dinger equation derived from the Maxwell`s equations.
As this equation is very cumbersome, we also study, in parallel to it, its
simplified version which keeps the most essential term: the term which accounts
for the {\it nonlinear diffraction}. The full equation additionally includes
terms generated by a deviation from the paraxial approximation and by a
longitudinal electric-field component in the beam. Solitary-wave stationary
solutions to both the full and simplified equations are found, treating the
terms which modify the nonlinear Schr\"{o}dinger equation as perturbations.
Within the framework of the perturbative approach, a conserved power of the
beam is obtained in an explicit form. It is found that the nonlinear
diffraction affects stationary beams much stronger than nonparaxiality and
longitudinal field. Stability of the beams is directly tested by simulating the
simplified equation, with initial configurations taken as predicted by the
perturbation theory. The numerically generated solitary beams are always stable
and never start to collapse, although they display periodic internal
vibrations, whose amplitude decreases with the increase of the beam power.Comment: 7 pages, 6 figures Accepted for publication in PR
Voting and the Cardinal Aggregation of Judgments
The paper elaborates the idea that voting is an instance of the aggregation of judgments, this being a more general concept than the aggregation of preferences. To aggregate judgments one must first measure them. I show that such aggregation has been unproblematic whenever it has been based on an independent and unrestricted scale. The scales analyzed in voting theory are either context dependent or subject to unreasonable restrictions. This is the real source of the diverse 'paradoxes of voting' that would better be termed 'voting pathologies'. The theory leads me to advocate what I term evaluative voting. It can also be called utilitarian voting as it is based on having voters express their cardinal preferences. The alternative that maximizes the sum wins. This proposal operationalizes, in an election context, the abstract cardinal theories of collective choice due to Fleming and Harsanyi. On pragmatic grounds, I argue for a three valued scale for general elections
- …