2,849 research outputs found

    Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin.</p> <p>Results</p> <p>Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion.</p> <p>Conclusion</p> <p>The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.</p

    Non-commutative fermion mass matrix and gravity

    Full text link
    The first part is an introductory description of a small cross-section of the literature on algebraic methods in non-perturbative quantum gravity with a specific focus on viewing algebra as a laboratory in which to deepen understanding of the nature of geometry. This helps to set the context for the second part, in which we describe a new algebraic characterisation of the Dirac operator in non-commutative geometry and then use it in a calculation on the form of the fermion mass matrix. Assimilating and building on the various ideas described in the first part, the final part consists of an outline of a speculative perspective on (non-commutative) quantum spectral gravity. This is the second of a pair of papers so far on this project.Comment: To appear in Int. J. Mod. Phys. A Previous title: An outlook on quantum gravity from an algebraic perspective. 39 pages, 1 xy-pic figure, LaTex Reasons for new version: added references, change of title and some comments more up-to-dat
    corecore