343 research outputs found
Multifractal clustering of passive tracers on a surface flow
We study the anomalous scaling of the mass density measure of Lagrangian
tracers in a compressible flow realized on the free surface on top of a three
dimensional flow. The full two dimensional probability distribution of local
stretching rates is measured. The intermittency exponents which quantify the
fluctuations of the mass measure of tracers at small scales are calculated from
the large deviation form of stretching rate fluctuations. The results indicate
the existence of a critical exponent above which exponents
saturate, in agreement with what has been predicted by an analytically solvable
model. Direct evaluation of the multi-fractal dimensions by reconstructing the
coarse-grained particle density supports the results for low order moments.Comment: 7 pages, 4 figures, submitted to EP
Correlation effects and the high-frequency spin susceptibility of an electron liquid: Exact limits
Spin correlations in an interacting electron liquid are studied in the
high-frequency limit and in both two and three dimensions. The third-moment sum
rule is evaluated and used to derive exact limiting forms (at both long- and
short-wavelengths) for the spin-antisymmetric local-field factor, . In two dimensions is found to diverge as at long wavelengths,
and the spin-antisymmetric exchange-correlation kernel of time-dependent spin
density functional theory diverges as in both two and three dimensions.
These signal a failure of the local-density approximation, one that can be
redressed by alternative approaches.Comment: 5 page
A novel composite web service selection based on quality of service
Using the internet, as a dynamic environment thanks to its distributed characteristic, for web service deployment has become a crucial issue in QoS-driven service composition. An accurate adaption should be undertaken to provide a reliable service composition which enables the composited services are being executed appropriately. That is, the critical aspect of service composition is the proper execution of combination of web services while the appropriate service adaption performed with respect to predetermined functional and non-functional characteristics. In this paper, we attempts to deliberate the optimization approaches to devise the appropriate scheme for QoS-based composite web service selection
Improved battery life for context awareness application in smart-phones
The new smart-phones with new operating system and portable sensors support the basis for context awareness systems and applications for handling user activity and user privacy. Nowadays, individuals need new services and real time information anywhere and anytime. Context awareness is an emerging service, which could be able to improve the user experiences in current situation. Context awareness can be considered as location, calendar, user activity and etc. The review of the literature proves that context awareness in mobile phone can be useful and studied as unavoidable service in next generation of smart-phone applications. In this paper, a short review about context awareness in mobile phone is studied, furthermore, we critically analyzed related works of context awareness in smart-phones. The review shows that the most important context in mobile phone is location, which is mostly obtained by using Global Positioning System (GPS) sensor in mobile phones but GPS can significantly increases battery consumption in mobile phones. In this regard, a framework as Improved Battery life in Context Awareness System (IBCS) is proposed to improve battery life and reduce cost of using GPS in context awareness applications based on smart-phones. The review argues the weakness and strength of these studies, and aims to (a) indicate the most important context in mobile phone, (b) reduce the battery consumption of GPS sensor in mobile phone
Stretching of polymers around the Kolmogorov scale in a turbulent shear flow
We present numerical studies of stretching of Hookean dumbbells in a
turbulent Navier-Stokes flow with a linear mean profile, =Sy. In addition
to the turbulence features beyond the viscous Kolmogorov scale \eta, the
dynamics at the equilibrium extension of the dumbbells significantly below eta
is well resolved. The variation of the constant shear rate S causes a change of
the turbulent velocity fluctuations on all scales and thus of the intensity of
local stretching rate of the advecting flow. The latter is measured by the
maximum Lyapunov exponent lambda_1 which is found to increase as \lambda_1 ~
S^{3/2}, in agreement with a dimensional argument. The ensemble of up to 2
times 10^6 passively advected dumbbells is advanced by Brownian dynamics
simulations in combination with a pseudospectral integration for the turbulent
shear flow. Anisotropy of stretching is quantified by the statistics of the
azimuthal angle which measures the alignment with the mean flow axis in
the x-y shear plane, and the polar angle theta which determines the orientation
with respect to the shear plane. The asymmetry of the probability density
function (PDF) of phi increases with growing shear rate S. Furthermore, the PDF
becomes increasingly peaked around mean flow direction (phi= 0). In contrast,
the PDF of the polar angle theta is symmetric and less sensitive to changes of
S.Comment: 16 pages, 14 Postscript figures (2 with reduced quality
Low rank perturbations and the spectral statistics of pseudointegrable billiards
We present an efficient method to solve Schr\"odinger's equation for
perturbations of low rank. In particular, the method allows to calculate the
level counting function with very little numerical effort. To illustrate the
power of the method, we calculate the number variance for two pseudointegrable
quantum billiards: the barrier billiard and the right triangle billiard
(smallest angle ). In this way, we obtain precise estimates for the
level compressibility in the semiclassical (high energy) limit. In both cases,
our results confirm recent theoretical predictions, based on periodic orbit
summation.Comment: 4 page
Pair distribution function in a two-dimensional electron gas
We calculate the pair distribution function, , in a two-dimensional
electron gas and derive a simple analytical expression for its value at the
origin as a function of . Our approach is based on solving the
Schr\"{o}dinger equation for the two-electron wave function in an appropriate
effective potential, leading to results that are in good agreement with Quantum
Monte Carlo data and with the most recent numerical calculations of . [C.
Bulutay and B. Tanatar, Phys. Rev. B {\bf 65}, 195116 (2002)] We also show that
the spin-up spin-down correlation function at the origin, , is mainly independent of the degree of spin polarization of
the electronic system.Comment: 5 figures, pair distribution dependence with distance is calculate
Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels
Acoustic force patterning is an emerging technology that provides a platform to control the spatial location of cells in a rapid, accurate, yet contactless manner. However, very few studies have been reported on the usage of acoustic force patterning for the rapid arrangement of biological objects, such as cells, in a three-dimensional (3D) environment. In this study, we report on a bio-acoustic force patterning technique, which uses surface acoustic waves (SAWs) for the rapid arrangement of cells within an extracellular matrix-based hydrogel such as gelatin methacryloyl (GelMA). A proof-of-principle was achieved through both simulations and experiments based on the in-house fabricated piezoelectric SAW transducers, which enabled us to explore the effects of various parameters on the performance of the built construct. The SAWs were applied in a fashion that generated standing SAWs (SSAWs) on the substrate, the energy of which subsequently was transferred into the gel, creating a rapid, and contactless alignment of the cells (<10 s, based on the experimental conditions). Following ultraviolet radiation induced photo-crosslinking of the cell encapsulated GelMA pre-polymer solution, the patterned cardiac cells readily spread after alignment in the GelMA hydrogel and demonstrated beating activity in 5-7 days. The described acoustic force assembly method can be utilized not only to control the spatial distribution of the cells inside a 3D construct, but can also preserve the viability and functionality of the patterned cells (e.g. beating rates of cardiac cells). This platform can be potentially employed in a diverse range of applications, whether it is for tissue engineering, in vitro cell studies, or creating 3D biomimetic tissue structures
Statistical Theory for the Kardar-Parisi-Zhang Equation in 1+1 Dimension
The Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimension dynamically develops
sharply connected valley structures within which the height derivative {\it is
not} continuous. There are two different regimes before and after creation of
the sharp valleys. We develop a statistical theory for the KPZ equation in 1+1
dimension driven with a random forcing which is white in time and Gaussian
correlated in space. A master equation is derived for the joint probability
density function of height difference and height gradient when the forcing correlation length is much smaller than
the system size and much bigger than the typical sharp valley width. In the
time scales before the creation of the sharp valleys we find the exact
generating function of and . Then we express the time
scale when the sharp valleys develop, in terms of the forcing characteristics.
In the stationary state, when the sharp valleys are fully developed, finite
size corrections to the scaling laws of the structure functions are also obtained.Comment: 50 Pages, 5 figure
Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field
We present a variational study of both unpaired and spin-singlet paired
states induced in a two-dimensional electron gas at low density by a
perpendicular magnetic field. It is based on an improved circular-cell
approximation which leads to a number of closed analytical results. The
ground-state energy of the Wigner crystal containing a single electron per cell
in the lowest Landau level is obtained as a function of the filling factor
: the results are in good agreement with those of earlier approaches and
predict for the upper filling factor at which the
solid-liquid transition occurs. A novel localized state of spin-singlet
electron pairs is examined and found to be a competitor of the unpaired state
for filling factor . The corresponding phase boundary is quantitatively
displayed in the magnetic field-electron density plane.Comment: 19 pages, 8 figures, submitted to Phys. Rev. B on 7th April 2001. to
appear in Phys. Rev.
- …