36 research outputs found

    Strukturna svojstva a-Si1−xCx:H SAXS-om i IR spektroskopijom

    Get PDF
    The a-Si1-xCx:H thin films, with carbon concentrations up to x = 0.3 deposited by means of a DC magnetron sputtering source, using benzene vapour as the origin of carbon atoms, were analysed by small-angle X-ray scattering (SAXS) and IR spectroscopy. The incorporation of carbon atoms in a-Si:H results in the appearance of IR absorption related to the Si-C and C-H bonds and a slight decrease of absorption related to Si-H bonds. By increasing the carbon concentration, stretching frequency of Si-H bonds increases. This frequency, which is related to the described changes, is considered to be the consequence of an increasing void volume ratio and/or void volume per each Si-H oscillator. The SAXS data of pure a-Si:H indicate ``particles" with the giro radius RG = 1.27 nm, which increases with the carbon content up to RG = 2.05 nm. These ``particles" are attributed to the clusters of small voids with dimensions up to several silicon vacancies.Primijenili smo raspršenje rendgenskog zračenja pod malim kutom (SAXS) i infracrvenu spektrometriju (IR) za analize tankih slojeva a-Si1−xCx:H, napravljenih DC magnetronskim izvorom čestica u prisustvu benzenskih para, za više koncentracija ugljika do x = 0.3. Ugradivanje ugljikovih atoma u a-Si:H ima za posljedicu pojavljivanje IR apsorpcije zbog Si-C i C-H vezanja i slabo smanjenje apsorpcije u području koje odgovara Si-H vezanju. S povećanjem koncentracije ugljika, povećava se frekvencija istezanja Si-H vezanja. Ta frekvencija, koja je u svezi s opisanim promjenama, smatra se posljedicom povećanog udjela praznina i/ili volumena praznine po Si-H oscilatoru. Podaci SAXS za čisti a-Si:H ukazuju na “čestice” sa žiro polumjerom RG = 1.27 nm koji se poveća za veće sadržaje ugljika do RG = 2.05 nm. Te se “čestice” pridjeljuju nakupinama malih praznina. Njihov je volumen reda veličine nekoliko jednoatomskih praznina u siliciju

    Silicon surface irradiated by nitrogen laser radiation

    Get PDF
    Monocrystalline silicon target was irradiated with a nitrogen laser beam (alfa = 337 nm, maximum energy density 1.1 J/cm^2, pulse duration 6 ns and repetition rate 0.2 Hz). The plasma formed at the silicon surface was observed spetroscopically in air (n_e = 3×10^18 cm^-3, T_e = 18 500 K) and in vacuum (n_e = 6.5×10^17 cm^-3, T_e = 16 000 K). The irradiated surface in vacuum was studied by a metallographic microscope. Droplets were created at crater edges. Their formation is explained by the hydrodynamical sputtering model

    Površina silicija ozračena dušikovim laserskim zračenjem

    Get PDF
    Monocrystalline silicon target was irradiated with a nitrogen laser beam (λ = 337 nm, maximum energy density 1.1 J/cm2, pulse duration 6 ns and repetition rate 0.2 Hz). The plasma formed at the silicon surface was observed spetroscopically in air (ne = 3×1018 cm-3, Te = 18 500 K) and in vacuum (ne = 6.5×1017 cm-3, Te = 16 000 K). The irradiated surface in vacuum was studied by a metallographic microscope. Droplets were created at crater edges. Their formation is explained by the hydrodynamical sputtering model.Monokristalni silicij se ozračivao snopom iz dušik ovog lasera (λ = 337 nm, maksimalna snaga 1.1 J/cm2 , trajanje pulsa 6 ns i frekvencija 0.2 Hz). Plazma nastala na površini silicija se promatrala spektroskopski u zraku (ne = 3 = 1018 cm 3 , Te 18500 K) i u vakuumu (ne = 6 ¬ 5 = 1017 cm 3 , Te = 16000 K). Površina ozračena u vakuumu se proučavala pomoću metalografskog mikroskopa. Opazile su se kapljice oko ruba udubine na siliciju. Nastajanje kapljica se tumači hidrodinamičkim modelom
    corecore