2,879 research outputs found
Vortons in the SO(5) model of high temperature superconductivity
It has been shown that superconducting vortices with antiferromagnetic cores
arise within Zhang's SO(5) model of high temperature supercondictivity. Similar
phenomena where the symmetry is not restored in the core of the vortex was
discussed by Witten in the case of cosmic strings. It was also suggested that
such strings can form stable vortons, which are closed loops of such vortices.
Motivated by this analogy, in following we will show that loops of such
vortices in the SO(5) model of high T_c superconductivity can exist as
classically stable objects, stabilized by the presence of conserved charges
trapped on the vortex core. These objects carry angular momentum which
counteracts the effect of the string tension that causes the loops to shrink.
The existence of such quasiparticles, which are called vortons, could be
interesting for the physics of high temperature superconductors. We also
speculate that the phase transition between superconducting and
antiferromagnetic phases at zero external magnetic field when the doping
parameter changes is associated with vortons.Comment: 11 page
On Exchange of Orbital Angular Momentum Between Twisted Photons and Atomic Electrons
We obtain an expression for the matrix element for a twisted
(Laguerre-Gaussian profile) photon scattering from a hydrogen atom. We consider
photons incoming with an orbital angular momentum (OAM) of ,
carried by a factor of not present in a plane-wave or pure
Gaussian profile beam. The nature of the transfer of units of OAM from
the photon to the azimuthal atomic quantum number of the atom is investigated.
We obtain simple formulae for these OAM flip transitions for elastic forward
scattering of twisted photons when the photon wavelength is large
compared with the atomic target size , and small compared the Rayleigh range
, which characterizes the collimation length of the twisted photon beam.Comment: 16 page
Governance tools for board members : adapting strategy maps and balanced scorecards for directorial action
The accountability of members of the board of directors of publicly traded companies has increased over years. Corresponding to these developments, there has been an inadequate advancement of tools and frameworks to help directorial functioning. This paper provides an argument for design of the Balanced Scorecard and Strategy Maps made available to the directors as a means of influencing, monitoring, controlling and assisting managerial action. This paper examines how the Balanced Scorecard and Strategy Maps could be modified and used for this purpose. The paper suggests incorporating Balanced Scorecards in the Internal Process perspective, ‘internal’ implying here not just ‘internal to the firm’, but also ‘internal to the inter-organizational system’. We recommend that other such factors be introduced separately under a new ‘perspective’ depending upon what the board wants to emphasize without creating any unwieldy proliferation of measures. Tracking the Strategy Map over time by the board of directors is a way for the board to take responsibility for the firm’s performance. The paper makes a distinction between action variables and monitoring variables. Monitoring variables are further divided on the basis of two considerations: a) whether results have been met or not and b) whether causative factors have met the expected levels of performance or not. Based on directorial responsibilities and accountability, we take another look at how the variables could be specified more completely and accurately with directorial recommendations for executives
Quantum Kinks: Solitons at Strong Coupling
We examine solitons in theories with heavy fermions. These ``quantum''
solitons differ dramatically from semi-classical (perturbative) solitons
because fermion loop effects are important when the Yukawa coupling is strong.
We focus on kinks in a --dimensional theory coupled to
fermions; a large- expansion is employed to treat the Yukawa coupling
nonperturbatively. A local expression for the fermion vacuum energy is derived
using the WKB approximation for the Dirac eigenvalues. We find that fermion
loop corrections increase the energy of the kink and (for large ) decrease
its size. For large , the energy of the quantum kink is proportional to ,
and its size scales as , unlike the classical kink; we argue that these
features are generic to quantum solitons in theories with strong Yukawa
couplings. We also discuss the possible instability of fermions to solitons.Comment: 21 pp. + 2 figs., phyzzx, JHU-TIPAC-92001
Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material
Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species
Target company cross-border effects in acquisitions into the UK
We analyse the abnormal returns to target shareholders in crossborder and domestic acquisitions of UK companies. The crossborder effect during the bid month is small (0.84%), although crossborder targets gain significantly more than domestic targets during the months surrounding the bid. We find no evidence for the level of abnormal returns in crossborder acquisitions to be associated with market access or exchange rate effects, and only limited support for an international diversification effect. However, the crossborder effect appears to be associated with significant payment effects, and there is no significant residual crossborder effect once various bid characteristics are controlled for
Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation
On the basis of recent investigations, a newly developed analytical procedure
is used for constructing a wide class of localized solutions of the controlled
three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the
dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is
decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a
one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a
variational condition for the controlling potential. Then, the above class of
localized solutions are constructed as the product of the solutions of the
transverse and longitudinal equations. On the basis of these exact 3D
analytical solutions, a stability analysis is carried out, focusing our
attention on the physical conditions for having collapsing or non-collapsing
solutions.Comment: 21 pages, 14 figure
Evaluation of the Workplace Environment in the UK, and the Impact on Users’ Levels of Stimulation
The purpose of this study is to evaluate a number of recently completed workplaces in the UK. The first aim is to assess the impact of various aspects of the workplace environment on users’ levels of stimulation. The body of previous research undertaken into the workplace environment, identified the aspects to be investigated. Samples of employees from the sixteen businesses were surveyed to determine their perceptions of the workplaces. The results were entered into a regression analysis, and the most significant predictors of perceived stimulation identified. The data also revealed a dramatic reduction in staff arousal levels from mornings to afternoons. Thus, there is a second aim to determine whether changes to significant aspects of the workplace environment during the day can counteract the reduction in users’ stimulation. Two further workplaces were studied to enable changes to be made over a 12-week period. A sample of employees completed questionnaires, and semi-structured interviews revealed the reasons behind the results. It was found that provision of artwork, personal control of temperature and ventilation and regular breaks were the most significant contributions to increasing stimulation after lunch; while user choice of layout, and design and décor of workspaces and break areas, were the most significant aspects at design stage
Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments
Generalized sparse matrix-matrix multiplication (or SpGEMM) is a key
primitive for many high performance graph algorithms as well as for some linear
solvers, such as algebraic multigrid. Here we show that SpGEMM also yields
efficient algorithms for general sparse-matrix indexing in distributed memory,
provided that the underlying SpGEMM implementation is sufficiently flexible and
scalable. We demonstrate that our parallel SpGEMM methods, which use
two-dimensional block data distributions with serial hypersparse kernels, are
indeed highly flexible, scalable, and memory-efficient in the general case.
This algorithm is the first to yield increasing speedup on an unbounded number
of processors; our experiments show scaling up to thousands of processors in a
variety of test scenarios
- …