10 research outputs found
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transientâs position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Recommended from our members
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models
We present UV, optical, and NIR photometry of the first electromagnetic
counterpart to a gravitational wave source from Advanced LIGO/Virgo, the binary
neutron star merger GW170817. Our data set extends from the discovery of the
optical counterpart at days to days post-merger, and includes
observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2
(GS/F2), and the {\it Hubble Space Telescope} ({\it HST}). The spectral energy
distribution (SED) inferred from this photometry at days is well
described by a blackbody model with K, a radius of cm (corresponding to an expansion velocity of ), and a bolometric luminosity of erg
s. At days we find a multi-component SED across the optical and
NIR, and subsequently we observe rapid fading in the UV and blue optical bands
and significant reddening of the optical/NIR colors. Modeling the entire data
set we find that models with heating from radioactive decay of Ni, or
those with only a single component of opacity from -process elements, fail
to capture the rapid optical decline and red optical/NIR colors. Instead,
models with two components consistent with lanthanide-poor and lanthanide-rich
ejecta provide a good fit to the data, the resulting "blue" component has
M and
c, and the "red" component has
M and
c. These ejecta masses are broadly
consistent with the estimated -process production rate required to explain
the Milky Way -process abundances, providing the first evidence that BNS
mergers can be a dominant site of -process enrichment
Recommended from our members
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg 2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for km s -1 Mpc -1 ) with the distance of 40 ±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of and , and thus an absolute magnitude of , in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.Funding for the DES Projects has been provided by the DOE and NSF(USA), MEC/MICINN/MINECO (Spain), STFC (UK), HEFCE (UK). NCSA (UIUC), KICP (U.Chicago), CCAPP (OhioState), MIFPA (TexasA&M), CNPQ, FAPERJ, FINEP (Brazil), DFG (Germany) and the Collaborating Institutions in the Dark Energy Survey. For further information please visit the publisher's website
First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary-Black-hole Merger GW170814
We present a multi-messenger measurement of the Hubble constant H 0 using the binaryâblack-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km sâ1 Mpcâ1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km sâ1 Mpcâ1, we find {H}_{0 {78}_{-24}^{+96}\,\mathrm{km}\,{{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
Recommended from our members
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for km s-1 Mpc-1) with the distance of 40 ±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of and , and thus an absolute magnitude of , in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources
Recommended from our members
First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary-Black-hole Merger GW170814
We present a multi-messenger measurement of the Hubble constant H 0 using the binary-black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s-1 Mpc-1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s-1 Mpc-1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0