729 research outputs found
The structure, regulation, and performance of pension funds in nine industrial countries
The author offers an overview of issues relating to the development of funded pension schemes in industrial countries. The analysis applies the economic theory of pension regulation to experience with the structure, regulation, and performance of funds in nine countries - Canada, Denmark, Germany, Japan, Netherlands, Sweden, Switzerland, the United Kingdom, and the United States - seeking to shed light on the finance of old age security in developing countries and the reform of pension funds in industrial countries. The main points of the analysis follow. Pension funds are either defined benefit or defined contribution. The individual bears more risk with defined contribution plans because the pension benefit depends on asset returns. Conceptually, defined benefit funds offer better employee retirement insurance. Private defined benefit pensions are generally available only through companies and typically include some restriction of labor mobility. Because of some shortcomings of fully or largely funded plans, especially for income redistribution, governments have chosen to maintain at least basic levels of pay-as-you-go social security. The scope of such unfunded social security schemes is the key determinant of the scale of private retirement savings. The extent to which pension funds are used as a vehicle for retirement saving depends on the regulatory regime. Tax advantages are the most important incentive, but a wide range of other regulatory choices also make pension funds more or less attractive to firms and employees. And some regulations, such as those affecting the portability of pensions, may have important consequences for economic efficiency. Though countries differ widely in their regulation of pension funds, some suggestions for good practice can still be made. Whether pension funds are a cost effective way of providing pensions depends on the real asset returns that can be attained, in relation to the growth of real wages. Ideally, there should be a gap of 2 to 3 percent between them. Portfolio distributions and fund management are the key determinants of returns to pension funds, subject to the returns available in the market. Prudent diversification in domestic and foreign markets and indexation of much of pension funds'portfolios both appear to be important. Pension funds affect capital markets in many ways. They influence market structure and demand for securities; stimulate innovation, allocative efficiency, and market development; and have a positive effect on overall saving. They may also have some deleterious effects, such as increases in volatility, short termism, and weakening of the control exerted by investors and creditors over firms. Prospects for pension funds in industrial countries vary with the maturity of existing funds and the generosity of social security benefits. In countries such as France, Germany, and Italy, growth in coming decades could be sizable. The key recommendations for countries that are just starting pension funds are for a mix of social security and private funds; for separate funding rather than book reserves; for defined benefit plans, subject to appropriate regulation; and for company-based pension funds.Pensions&Retirement Systems,Insurance&Risk Mitigation,Environmental Economics&Policies,Insurance Law,Banks&Banking Reform
Bosons in anisotropic traps: ground state and vortices
We solve the Gross-Pitaevskii equations for a dilute atomic gas in a magnetic
trap, modeled by an anisotropic harmonic potential. We evaluate the wave
function and the energy of the Bose Einstein condensate as a function of the
particle number, both for positive and negative scattering length. The results
for the transverse and vertical size of the cloud of atoms, as well as for the
kinetic and potential energy per particle, are compared with the predictions of
approximated models. We also compare the aspect ratio of the velocity
distribution with first experimental estimates available for Rb. Vortex
states are considered and the critical angular velocity for production of
vortices is calculated. We show that the presence of vortices significantly
increases the stability of the condensate in the case of attractive
interactions.Comment: 22 pages, REVTEX, 8 figures available upon request or at
http://anubis.science.unitn.it/~dalfovo/papers/papers.htm
Small-amplitude normal modes of a vortex in a trapped Bose-Einstein condensate
We consider a cylindrically symmetric trap containing a small Bose-Einstein
condensate with a singly quantized vortex on the axis of symmetry. A
time-dependent variational Lagrangian analysis yields the small-amplitude
dynamics of the vortex and the condensate, directly determining the equations
of motion of the coupled normal modes. As found previously from the Bogoliubov
equations, there are two rigid dipole modes and one anomalous mode with a
negative frequency when seen in the laboratory frame.Comment: 4 pages, no figures, Revte
Semiclassical Solution of the Quantum Hydrodynamic Equation for Trapped Bose-condensed Gas in the l=0 Case
In this paper the quantum hydrodynamic equation describing the collective,
low energy excitations of a dilute atomic Bose gas in a given trapping
potential is investigated with the JWKB semiclassical method. In the case of
spherically symmetric harmonic confining potential a good agreement is shown
between the semiclassical and the exact energy eigenvalues as well as wave
functions. It is also demonstrated that for larger quantum numbers the
calculation of the semiclassical wave function is numerically more stable than
the exact polynomial with large alternating coefficients.Comment: 12 pages, 7 figure
Condensate Heating by Atomic Losses
Atomic Bose-Einstein condensate is heated by atomic losses. Predicted
depletion ranges from 1% for a uniform 3D condensate to around 10% for a
quasi-1D condensate in a harmonic trap.Comment: 4 pages in RevTex, 1 eps figur
Second-order corrections to mean field evolution for weakly interacting Bosons. I
Inspired by the works of Rodnianski and Schlein and Wu, we derive a new
nonlinear Schr\"odinger equation that describes a second-order correction to
the usual tensor product (mean-field) approximation for the Hamiltonian
evolution of a many-particle system in Bose-Einstein condensation. We show that
our new equation, if it has solutions with appropriate smoothness and decay
properties, implies a new Fock space estimate. We also show that for an
interaction potential , where is
sufficiently small and , our program can be easily
implemented locally in time. We leave global in time issues, more singular
potentials and sophisticated estimates for a subsequent part (part II) of this
paper
Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas
A straight forward numerical technique, based on the Gross-Pitaevskii
equation, is used to generate a self-consistent description of
thermally-excited states of a dilute boson gas. The process of evaporative
cooling is then modelled by following the time evolution of the system using
the same equation. It is shown that the subsequent rethermalisation of the
thermally-excited state produces a cooler coherent condensate. Other results
presented show that trapping vortex states with the ground state may be
possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical
Review A, 1st February 199
Quantum Depletion of an Excited Condensate
We analyze greying of the dark soliton in a Bose-Einstein condensate in the
limit of weak interaction between atoms. The condensate initially prepared in
the excited dark soliton state is loosing atoms because of spontaneous quantum
depletion. These atoms are depleted from the soliton state into single particle
states with nonzero density in the notch of the soliton. As a result the image
of the soliton is losing contrast. This quantum depletion mechanism is
efficient even at zero temperature when a thermal cloud is absent.Comment: 4 pages; version to appear in Phys.Rev.A; change in the title plus a
number of small changes in the tex
Bose-Einstein condensation with magnetic dipole-dipole forces
Ground-state solutions in a dilute gas interacting via contact and magnetic
dipole-dipole forces are investigated. To the best of our knowledge, it is the
first example of studies of the Bose-Einstein condensation in a system with
realistic long-range interactions. We find that for the magnetic moment of e.g.
chromium and a typical value of the scattering length all solutions are stable
and only differ in size from condensates without long-range interactions. By
lowering the value of the scattering length we find a region of unstable
solutions. In the neighborhood of this region the ground state wavefunctions
show internal structures not seen before in condensates. Finally, we find an
analytic estimate for the characteristic length appearing in these solutions.Comment: final version, 4 pages, 4 figure
Free expansion of Bose-Einstein condensates with quantized vortices
The expansion of Bose-Einstein condensates with quantized vortices is studied
by solving numerically the time-dependent Gross-Pitaevskii equation at zero
temperature. For a condensate initially trapped in a spherical harmonic
potential, we confirm previous results obtained by means of variational methods
showing that, after releasing the trap, the vortex core expands faster than the
radius of the atomic cloud. This could make the detection of vortices feasible,
by observing the depletion of the density along the axis of rotation. We find
that this effect is significantly enhanced in the case of anisotropic
disc-shaped traps. The results obtained as a function of the anisotropy of the
initial configuration are compared with the analytic solution for a
noninteracting gas in 3D as well as with the scaling law predicted for an
interacting gas in 2D.Comment: 5 pages, 6 postscript figure
- …