2,826 research outputs found
A Closed Class of Hydrodynamical Solutions for the Collective Excitations of a Bose-Einstein Condensate
A trajectory approach is taken to the hydrodynamical treatment of collective
excitations of a Bose-Einstein condensate in a harmonic trap. The excitations
induced by linear deformations of the trap are shown to constitute a broad
class of solutions that can be fully described by a simple nonlinear matrix
equation. An exact closed-form expression is obtained for the solution
describing the mode {n=0, m=2} in a cylindrically symmetric trap, and the
calculated amplitude-dependent frequency shift shows good agreement with the
experimental results of the JILA group.Comment: RevTex, 4 pages, 1 eps figure, identical to the published versio
Boundary of two mixed Bose-Einstein condensates
The boundary of two mixed Bose-Einstein condensates interacting repulsively
was considered in the case of spatial separation at zero temperature.
Analytical expressions for density distribution of condensates were obtained by
solving two coupled nonlinear Gross-Pitaevskii equations in cases corresponding
weak and strong separation. These expressions allow to consider excitation
spectrum of a particle confined in the vicinity of the boundary as well as
surface waves associated with surface tension.Comment: 6 pages, 3 figures, submitted to Phys.Rev.
Spin dynamics of a trapped spin-1 Bose Gas above the Bose-Einstein transition temperature
We study collective spin oscillations in a spin-1 Bose gas above the
Bose-Einstein transition temperature. Starting from the Heisenberg equation of
motion, we derive a kinetic equation describing the dynamics of a thermal gas
with the spin-1 degree of freedom. Applying the moment method to the kinetic
equation, we study spin-wave collective modes with dipole symmetry. The dipole
modes in the spin-1 system are found to be classified into the three type of
modes. The frequency and damping rate are obtained as functions of the peak
density. The damping rate is characterized by three relaxation times associated
with collisions.Comment: 19 pages, 5 figur
Instabilities in a Two-Component, Species Conserving Condensate
We consider a system of two species of bosons of equal mass, with
interactions and for bosons of the same and different
species respectively. We present a rigorous proof -- valid when the Hamiltonian
does not include a species switching term -- showing that, when
, the ground state is fully "polarized" (consists of
atoms of one kind only). In the unpolarized phase the low energy excitation
spectrum corresponds to two linearly dispersing modes that are even a nd odd
under species exchange. The polarization instability is signaled by the vani
shing of the velocity of the odd modes.Comment: To appear in Phys. Rev.
Scalar Synchrotron Radiation in the Schwarzschild-anti-de Sitter Geometry
We present a complete relativistic analysis for the scalar radiation emitted
by a particle in circular orbit around a Schwarzschild-anti-de Sitter black
hole. If the black hole is large, then the radiation is concentrated in narrow
angles- high multipolar distribution- i.e., the radiation is synchrotronic.
However, small black holes exhibit a totally different behavior: in the small
black hole regime, the radiation is concentrated in low multipoles. There is a
transition mass at , where is the AdS radius. This behavior is
new, it is not present in asymptotically flat spacetimes.Comment: 13 pages, 6 figures, published version. References adde
Dynamics of a classical gas including dissipative and mean field effects
By means of a scaling ansatz, we investigate an approximated solution of the
Boltzmann-Vlasov equation for a classical gas. Within this framework, we derive
the frequencies and the damping of the collective oscillations of a
harmonically trapped gas and we investigate its expansion after release of the
trap. The method is well suited to studying the collisional effects taking
place in the system and in particular to discussing the crossover between the
hydrodynamic and the collisionless regimes. An explicit link between the
relaxation times relevant for the damping of the collective oscillations and
for the expansion is established.Comment: 4 pages, 1 figur
Nonergodic Behavior of Interacting Bosons in Harmonic Traps
We study the time evolution of a system of interacting bosons in a harmonic
trap. In the low-energy regime, the quantum system is not ergodic and displays
rather large fluctuations of the ground state occupation number. In the high
energy regime of classical physics we find nonergodic behavior for modest
numbers of trapped particles. We give two conditions that assure the ergodic
behavior of the quantum system even below the condensation temperature.Comment: 11 pages, 3 PS-figures, uses psfig.st
Adhesion-induced phase separation of multiple species of membrane junctions
A theory is presented for the membrane junction separation induced by the
adhesion between two biomimetic membranes that contain two different types of
anchored junctions (receptor/ligand complexes). The analysis shows that several
mechanisms contribute to the membrane junction separation. These mechanisms
include (i) the height difference between type-1 and type-2 junctions is the
main factor which drives the junction separation, (ii) when type-1 and type-2
junctions have different rigidities against stretch and compression, the
``softer'' junctions are the ``favored'' species, and the aggregation of the
softer junction can occur, (iii) the elasticity of the membranes mediates a
non-local interaction between the junctions, (iv) the thermally activated shape
fluctuations of the membranes also contribute to the junction separation by
inducing another non-local interaction between the junctions and renormalizing
the binding energy of the junctions. The combined effect of these mechanisms is
that when junction separation occurs, the system separates into two domains
with different relative and total junction densities.Comment: 23 pages, 6 figure
The diagonalization method in quantum recursion theory
As quantum parallelism allows the effective co-representation of classical
mutually exclusive states, the diagonalization method of classical recursion
theory has to be modified. Quantum diagonalization involves unitary operators
whose eigenvalues are different from one.Comment: 15 pages, completely rewritte
- …
