1,961 research outputs found

    Floodplain connectivity, disturbance and change: a palaeoentomological investigation of floodplain ecology from south-west England

    No full text
    1. Floodplain environments are increasingly subject to enhancement and restoration, with the purpose of increasing their biodiversity and returning them to a more 'natural' state. Defining such a state based solely upon neoecological data is problematic and has led several authors to suggest the use of a palaeoecological approach.2. Fossil Coleopteran assemblages recovered from multiple palaeochannel fills in south-west England were used to investigate past floodplain and channel characteristics during the mid- to late-Holocene. Ordination of coleopteran data was performed using Detrended Correspondence Analysis (DCA) and produced clear and discrete clustering. This clustering pattern is related to the nature of the environment in which assemblages were deposited and hence channel configuration and dynamics.3. The DCA clustering pattern is strongly related to measures of ecological evenness, and a strong relationship between these indices and the composition of the water beetle assemblage within samples was revealed. Repeating the ordination with presence–absence data results in a similar pattern of clustering, implying that assemblage composition is crucial in determining cluster placement.4. As assemblage composition is primarily a function of floodplain topography and hence disturbance regime, we attempt to relate these data to the Intermediate Disturbance Hypothesis (IDH). A significant positive correlation was found between ecological diversity (Shannon's H') and Axis 1 of all ordinations in predominantly aquatic assemblages

    Continuous Observation of Interference Fringes from Bose Condensates

    Full text link
    We use continuous measurement theory to describe the evolution of two Bose condensates in an interference experiment. It is shown how the system evolves in a single run of the experiment into a state with a fixed relative phase, while the total gauge symmetry remains unbroken. Thus, an interference pattern is exhibited without violating atom number conservation.Comment: 4 pages, Postscrip

    Condensate fluctuations of a trapped, ideal Bose gas

    Get PDF
    For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the ground state occupation becomes macroscopic, the condensate number fluctuations remain micrscopic. However, this is the only significant aspect in which the grand canonical description differs from canonical or microcanonical in the thermodynamic limit. General arguments and estimates including some vanishingly small quantities are compared to explicit, fixed-number calculations for 10^2 to 10^6 particles.Comment: 16 pages (REVTeX) plus 4 figures (ps), revision includes brief comparison of repulsive-interaction vs. fixed-N fluctuation damping. To be published in Phys. Rev.

    Loading a vapor cell magneto-optic trap using light-induced atom desorption

    Get PDF
    Low intensity white light was used to increase the loading rate of 87^{87}Rb atoms into a vapor cell magneto-optic trap by inducing non-thermal desorption of Rb atoms from the stainless steel walls of the vapor cell. An increased Rb partial pressure reached a new equilibrium value in less than 10 seconds after switching on the broadband light source. After the source was turned off, the partial pressure returned to its previous value in 1/e1/e times as short as 10 seconds.Comment: 7 pages, 6 figure

    Magnetic Branes in Gauss-Bonnet Gravity

    Full text link
    We present two new classes of magnetic brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static magnetic brane. We also generalize this solution to the case of spinning magnetic branes with one or more rotation parameters. We find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when all the rotation parameters are zero, the electric field vanishes, and therefore the brane has no net electric charge. For the spinning brane, when one or more rotation parameters are non zero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Again we find that the net electric charge of the branes in these spacetimes is proportional to the magnitude of the velocity of the brane. Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.

    Frequency down conversion through Bose condensation of light

    Get PDF
    We propose an experimental set up allowing to convert an input light of wavelengths about 12μm1-2 \mu m into an output light of a lower frequency. The basic principle of operating relies on the nonlinear optical properties exhibited by a microcavity filled with glass. The light inside this material behaves like a 2D interacting Bose gas susceptible to thermalise and create a quasi-condensate. Extension of this setup to a photonic bandgap material (fiber grating) allows the light to behave like a 3D Bose gas leading, after thermalisation, to the formation of a Bose condensate. Theoretical estimations show that a conversion of 1μm1 \mu m into 1.5μm1.5 \mu m is achieved with an input pulse of about 1ns1 ns with a peak power of 103W10^3 W, using a fiber grating containing an integrated cavity of size about 500μm×100μm2500 \mu m \times 100 \mu m^2.Comment: 4 pages, 1 figure

    Order Parameter at the Boundary of a Trapped Bose Gas

    Full text link
    Through a suitable expansion of the Gross-Pitaevskii equation near the classical turning point, we obtain an explicit solution for the order parameter at the boundary of a trapped Bose gas interacting with repulsive forces. The kinetic energy of the system, in terms of the classical radius RR and of the harmonic oscillator length aHOa_{_{HO}}, follows the law Ekin/NR2[log(R/aHO)+const.]E_{kin}/N \propto R^{-2} [\log (R/a_{_{HO}}) + \hbox{const.}], approaching, for large RR, the results obtained by solving numerically the Gross-Pitaevskii equation. The occurrence of a Josephson-type current in the presence of a double trap potential is finally discussed.Comment: 11 pages, REVTEX, 4 figures (uuencoded-gzipped-tar file) also available at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    Bosons in anisotropic traps: ground state and vortices

    Full text link
    We solve the Gross-Pitaevskii equations for a dilute atomic gas in a magnetic trap, modeled by an anisotropic harmonic potential. We evaluate the wave function and the energy of the Bose Einstein condensate as a function of the particle number, both for positive and negative scattering length. The results for the transverse and vertical size of the cloud of atoms, as well as for the kinetic and potential energy per particle, are compared with the predictions of approximated models. We also compare the aspect ratio of the velocity distribution with first experimental estimates available for 87^{87}Rb. Vortex states are considered and the critical angular velocity for production of vortices is calculated. We show that the presence of vortices significantly increases the stability of the condensate in the case of attractive interactions.Comment: 22 pages, REVTEX, 8 figures available upon request or at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm
    corecore