49 research outputs found
To Share or Not to Share? Knowledge Convergence and Divergence in Cross-Disciplinary Collaboration
For cross-disciplinary teams to be effective, what knowledge should be shared and what knowledge should remain unique to individual team members? We adopted a mixed-method approach using a sample of grant-funded teams composed of principal and co-principal investigators of diverse disciplines. Interviewees and survey respondents especially favored knowledge similarity over uniqueness for team vision and teamwork, but less preference for convergence emerged for research outcomes and research content (theory, operational details of methodology, analysis). Moreover, more team knowledge convergence was associated with higher perceived collaboration satisfaction and trended in the direction of more grants, publications, and conference presentations
DNA Renaturation at the Water-Phenol Interface
We study DNA adsorption and renaturation in a water-phenol two-phase system,
with or without shaking. In very dilute solutions, single-stranded DNA is
adsorbed at the interface in a salt-dependent manner. At high salt
concentrations the adsorption is irreversible. The adsorption of the
single-stranded DNA is specific to phenol and relies on stacking and hydrogen
bonding. We establish the interfacial nature of a DNA renaturation at a high
salt concentration. In the absence of shaking, this reaction involves an
efficient surface diffusion of the single-stranded DNA chains. In the presence
of a vigorous shaking, the bimolecular rate of the reaction exceeds the
Smoluchowski limit for a three-dimensional diffusion-controlled reaction. DNA
renaturation in these conditions is known as the Phenol Emulsion Reassociation
Technique or PERT. Our results establish the interfacial nature of PERT. A
comparison of this interfacial reaction with other approaches shows that PERT
is the most efficient technique and reveals similarities between PERT and the
renaturation performed by single-stranded nucleic acid binding proteins. Our
results lead to a better understanding of the partitioning of nucleic acids in
two-phase systems, and should help design improved extraction procedures for
damaged nucleic acids. We present arguments in favor of a role of phenol and
water-phenol interface in prebiotic chemistry. The most efficient renaturation
reactions (in the presence of condensing agents or with PERT) occur in
heterogeneous systems. This reveals the limitations of homogeneous approaches
to the biochemistry of nucleic acids. We propose a heterogeneous approach to
overcome the limitations of the homogeneous viewpoint
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Activity-dependent degeneration of axotomized neuromuscular synapses in Wld(S) mice
AbstractActivity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular junctions in flexor digitorum brevis (FDB) and deep lumbrical (DL) muscles of Wallerian degeneration-Slow (WldS) mutant mice. First, we maintained ex vivo FDB and DL nerve-muscle explants at 32°C for up to 48h. About 90% of fibers from WldS mice remained innervated, compared with about 36% in wild-type muscles at the 24-h checkpoint. Periodic high-frequency nerve stimulation (100Hz: 1s/100s) reduced synaptic protection in WldS preparations by about 50%. This effect was abolished in reduced Ca2+ solutions. Next, we assayed FDB and DL innervation after 7days of complete tetrodotoxin (TTX)-block of sciatic nerve conduction in vivo, followed by tibial nerve axotomy. Five days later, only about 9% of motor endplates remained innervated in the paralyzed muscles, compared with about 50% in 5day-axotomized muscles from saline-control-treated WldS mice with no conditioning nerve block. Finally, we gave mice access to running wheels for up to 4weeks prior to axotomy. Surprisingly, exercising WldS mice ad libitum for 4weeks increased about twofold the amount of subsequent axotomy-induced synaptic degeneration. Together, the data suggest that vulnerability of mature neuromuscular synapses to axotomy, a potent neurodegenerative trigger, may be enhanced bimodally, either by disuse or by hyperactivity
Spatial Habitat Structure Assembles Willow-Dependent Communities across the Primary Successional Watersheds of Mount St. Helens, USA
The eruption of Mount St. Helens in 1980 resulted in a cataclysmic restructuring of its surrounding landscapes. The Pumice Plain is one of these landscapes, where tree species such as Sitka willow (Salix sitchensis) and their dependent communities have been established along newly-formed streams. Thus, the study of these dependent communities provides a unique and rare opportunity to investigate factors influencing metacommunity assembly during true primary succession. We analyzed the influence of landscape connectivity on metacommunity assembly through a novel application of circuit theory, alongside the effects of other factors such as stream locations, willow leaf chemistry, and leaf area. We found that landscape connectivity structures community composition on willows across the Pumice Plain, where the least connected willows favored active flyers such as the western tent caterpillar (Malacosoma fragilis) or the Pacific willow leaf beetle (Pyrrhalta decora carbo). We also found that multiple levels of spatial habitat structure linked via landscape connectivity can predict the presence of organisms lacking high rates of dispersal, such as the invasive stem-boring poplar weevil (Cryptorhynchus lapathi). This is critical for management as we show that the maintenance of a heterogeneous mixture of landscape connectivity and resource locations can facilitate metacommunity dynamics to promote ecosystem function and mitigate the influences of invasive species