224 research outputs found

    The Use of Ozenoxacin in Pediatric Patients: Clinical Evidence, Efficacy and Safety

    Get PDF
    Impetigo is the most common childhood skin infection in the world. There are two patterns of impetigo: nonbullous (or impetigo contagiosa) and bullous. The nonbullous type is due to Staphylococcus aureus and group A beta-haemolytic Streptococcus and occurs in 70% of impetigo cases. Impetigo is often a self-limited disease, but complications can sometimes occur. Therapy depends on the extent and site of the lesions and on the presence of systemic symptoms. The increase in multidrug resistance pathogens, such as methicillin-resistant Staphylococcus aureus, mupirocin-resistant Staphylococcus aureus or quinolone-resistant Staphylococcus aureus, requires the development of new antibiotics against these agents. The aim of this review is to evaluate the efficacy and safety of ozenoxacin in children compared to those of other approved topical antimicrobial therapies. The bactericidal activity against both susceptible and resistant organisms is a relevant feature of ozenoxacin because the bacterial strain and potential for resistance are generally not known at the beginning of therapy. Additionally, its minimal dermal absorption and its capability to reach high concentrations in the upper layers of the epidermidis agrees with the recommended practice aimed at avoiding the emergence of bacterial resistance in presence of a good safety profile. Further studies with real-life analyses and pharmacoeconomic evaluation are needed to confirm its role as first-line and second-line therapy in children with impetigo

    Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques

    Get PDF
    Background: Tomato brown rugose fruit virus (ToBRFV) is a highly infectious tobamovirus that causes severe disease in tomato (Solanum lycopersicum L.) crops. In Italy, the first ToBRFV outbreak occurred in 2018 in several provinces of the Sicily region. ToBRFV outbreak represents a serious threat for tomato crops in Italy and the Mediterranean Basin. Methods: Molecular and biological characterisation of the Sicilian ToBRFV ToB-SIC01/19 isolate was performed, and a sensitive and specific Real-time RT-PCR TaqMan minor groove binder probe method was developed to detect ToBRFV in infected plants and seeds. Moreover, four different sample preparation procedures (immunocapture, total RNA extraction, direct crude extract and leaf-disk crude extract) were evaluated. Results: The Sicilian isolate ToB-SIC01/19 (6,391 nt) showed a strong sequence identity with the isolates TBRFV-P12-3H and TBRFV-P12-3G from Germany, Tom1-Jo from Jordan and TBRFV-IL from Israel. The ToB-SIC01/19 isolate was successfully transmitted by mechanical inoculations in S. lycopersicum L. and Capsicum annuum L., but no transmission occurred in S. melongena L. The developed real-time RT-PCR, based on the use of a primer set designed on conserved sequences in the open reading frames3, enabled a reliable quantitative detection. This method allowed clear discrimination of ToBRFV from other viruses belonging to the genus Tobamovirus, minimising false-negative results. Using immunocapture and total RNA extraction procedures, the real-time RT-PCR and end-point RT-PCR gave the same comparable results. Using direct crude extracts and leaf-disk crude extracts, the end-point RT-PCR was unable to provide a reliable result. This developed highly specific and sensitive real-time RT-PCR assay will be a particularly valuable tool for early ToBRFV diagnosis, optimising procedures in terms of costs and time

    First report of Tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy

    Get PDF
    omato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus (family Geminiviridae) which infects species in the families Cucurbitaceae and Solanaceae (Padidam et al., 1995; Mizutani et al., 2011). Begomoviruses are transmitted by the whitefly Bemisia tabaci in a persistent manner (Rosen et al., 2015). In October 2015, severe symptoms not previously reported by growers in the horticultural area of the Province of Trapani (Sicily, Italy) were observed on zucchini squash (Cucurbita pepo) in open fields. The symptoms included yellow mosaic, severe leaf curling, swelling of veins of young leaves, shortening of internodes, roughness of the skin of fruit and reduced fruit size; the symptoms were reminiscent of those caused by begomoviruses. Total DNA was extracted from young leaves of 22 plants by phenol/chloroform extraction and ethanol precipitation. PCR was performed with the A1F/A1R primer pair (Mizutani et al., 2011) for the DNA-A component and the pair described by Ruiz et al. (2015) for the DNA-B component to amplify a ~1200-bp fragment of DNA-A and a ~890 bp fragment of DNA-B, respectively. All 10 samples were positive by PCR with both primer pairs. No amplification products were obtained using primers specific for the monopartite begomoviruses Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus (Davino et al., 2008). DAS-ELISA analysis for Cucumber mosaic virus, Papaya ring spot virus and Zucchini yellow mosaic virus (Loewe Phytodiagnostica, Germany) yielded negative results

    First report of Southern tomato virus in tomato crops in Italy

    Get PDF
    Twenty-five tomato plants (Solanum lycopersicum) showing symptoms of viral disease were sampled from different greenhouses in the Ragusa province (Southern Italy) in summer 2015. Plants showed chlorosis on leaves and fruits and deformation and depressed spots of dark colour which later evolved into necrosis (Fig. 1). These symptoms were observed on the entire cluster of fruit making the product unsaleable. Based on these symptoms, samples were analysed for Cucumber mosaic virus, Pepino mosaic virus (PepMV), Potato virus Y (PVY), Tomato mosaic virus and Tomato spotted wilt virus by DAS-ELISA with polyclonal antibodies (Loewe Phytodiagnostica, Germany), and for the emerging Southern tomato virus (STV) by RT-PCR (Candresse et al., 2013). Three of the 25 samples analysed were positive only for PepMV whereas the rest of the samples had mixed infections: fifteen plants were co-infected with PepMV and PVY, and seven with STV, PepMV and PVY. The amplification product (894 bp) obtained from one STV-infected plant was purified using the UltraClean® PCR Clean-Up kit (Mo-Bio, USA) and the consensus nucleotide sequences were determined in both senses using an ABI 3130XL Genetic Analyzer (Life Technologies, USA) and deposited in GenBank under accession number KT948068. The nucleotide identity of the Italian STV isolate was greater than 99% with STV isolates Mexico1 (EF442780), BD-13 (KT634055), CN-12 (KT438549), MS7 (EU413670) and FR (KC333078) from Mexico, Bangladesh, China, USA and France, respectively

    Detection of Parietaria Mottle Virus by RT-qPCR: An Emerging Virus Native of Mediterranean Area That Undermine Tomato and Pepper Production in Southern Italy

    Get PDF
    Parietaria mottle virus (PMoV) is considered an emerging virus in many countries of the Mediterranean basin, especially on tomato and pepper crops. Symptoms on tomato leaves and fruits can be easily confused with those induced by cucumber mosaic virus (CMV) with necrogenic satellite RNA (CMV-satRNA), tomato spotted wilt virus (TSWV) or tomato mosaic virus (ToMV). Mixed infection of these viruses has been also reported in some tomato cultivars, with an increase in the complexity of the symptoms and severity of the disease. Although a specific serum and riboprobes have been produced, nowadays no sensitive diagnostic methods are available for the rapid PMoV detection. Here, we have developed a RT-qPCR assay with the aim to establish a more sensitive and specific method for PMoV detection. Specific primers and TaqMan probe were designed and in silico tested with all PMoV isolates available in GenBank. Moreover, this method was evaluated on tomato naturally infected samples from Sicily region (Italy). Results obtained showed that the RT-qPCR assay developed in this work is extremely sensitive, in fact, it is able to detect as few as 10 PMoV RNA copies in tomato total RNA; moreover, it will be a particularly valuable tool for early detection of PMoV. Furthermore, the analyzes on field samples show how this pathogen is increasingly present in tomato crops in the last years, helping to undermine the Italian horticultural sector

    Silence of the lambs: The immunological and molecular mechanisms of covid-19 in children in comparison with adults

    Get PDF
    Children infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can suffer from severe coronavirus disease 2019 (COVID-19). However, compared to adults and the elderly, susceptibility to SARS-CoV-2 infection in children seems to be lower; when infection does develop, most infected children remain asymptomatic or develop a mild disease. Understanding why children seem generally protected from severe COVID-19 and only rarely develop clinical conditions that can cause hospitalization, admission to the pediatric intensive care unit and death can be important. More details on the mechanism of action of SARS-CoV-2 could be defined. Moreover, the role played by children in virus diffusion should be better analyzed, and the development of effective preventive and therapeutic measures against COVID-19 could be favored. The main aim of this paper is to discuss the present knowledge on immunological and molecular mechanisms that could explain differences in COVID-19 clinical manifestations between children and adults. Literature analysis showed that although most children are clearly protected from the development of severe COVID-19, the reasons for this peculiarity are not fully understood. Developmental variations in immune system function together with the potential role of repeated antigen stimulation in the first periods of life on innate immunity are widely studied. As the few children who develop the most severe form of pediatric COVID-19 have certain alterations in the immune system response to SARS-CoV-2 infection, studies about the relationships between SARS-CoV-2 and the immune system of the host are essential to understand the reasons for the age-related differences in the severity of COVID-19

    Actas de Horticultura

    Get PDF
    El cultivo de los cítricos comenzó en Extremo Oriente hace unos 4.000 años, en las regiones que ocupan actualmente China y Japón. Los grandes movimientos migratorios que ocasionaron las conquistas de Alejandro Magno, la expansión del Islam y el descubrimiento de América favorecieron la expansión de este cultivo por todo el mundo. Sin embargo, fue a partir del siglo XVIII cuando la citricultura adquirió una relevancia económica, tanto desde el punto de vista industrial como ornamental. El movimiento de plantas fue acompañado por la difusión de diversos patógenos, aunque afortunadamente, sólo una parte de los presentes en las regiones de origen han llegado en las nuevas áreas de cultivo. En Italia, la superficie cultivada con cítricos es de aproximadamente 160.000 Ha y de éstas, alrededor del 60% se encuentran en Sicilia. En los últimos años ha cobrado relevancia la producción de cítricos destinados a fines ornamentales, con una producción media anual en Sicilia de unos 4,5 millones de plantas, lo que la convierte en el máximo productor de cítricos ornamentales de Europa. Entre estos se encuentran los limones ornamentales, distintos kumquats, calamondín, naranjo amargo, cidro, naranjo dulce, mandarinos y pomelos. Desde el punto de vista sanitario, hay que tener en cuenta que las plantas ornamentales que se venden por todo el territorio Europeo pueden actuar como reservorios y facilitar el tráfico y emergencia de nuevas enfermedades. Entre las enfermedades más comunes en los cítricos ornamentales se encuentra la exocortis, las protuberancias nerviales (vein enation), las manchas anulares (ringspot), la psoriasis, la tristeza, la variegación, las concavidades gomosas (concave gum), la impietratura, el stubborn y el Huanglongbing. En este artículo se describen las principales enfermedades que afectan a los cítricos ornamentales y que representan un riesgo en la Comunidad Europea

    First Report of Tomato Leaf Curl New Delhi Virus Causing Yellow Leaf Curl of Pepper in Europe

    Get PDF
    Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus (family Geminiviridae) with two circular ssDNA genome components (DNA-A and DNA-B), is transmitted in a circulative nonpropagative manner by the whitefly Bemisia tabaci (Gennadius). Although it was first reported in Asia on tomato and other solanaceous crops such as eggplant, potato, and chilli pepper in the Mediterranean basin, this virus was mainly detected on cucurbits and only sporadically on tomato and on two wild solanaceous species, Datura stramonium L. and Solanum nigrum L. (Juárez et al. 2019). In 2018, separate surveys were carried out in protected cultivations of sweet pepper (Capsicum annuum L.) in two Italian regions: Lazio and Campania. The greenhouses were in areas with high density of B. tabaci and where ToLCNDV outbreaks occurred on cucurbits since 2016 (Panno et al. 2019). Some plants showing symptoms of yellowing and leaf curling were found in both regions, whereas fruit symptoms were neither observed nor reported by farmers. This disease syndrome, known as yellow leaf curl disease (YLCD), can be caused in pepper by several begomoviruses, as reported recently in a review listing the viruses causing YLCD in peppers in Thailand (Chiemsombat et al. 2018). Symptomatic leaves were collected during late summer 2018 from different pepper plants as well as from the neighboring zucchini cultivations, showing the typical symptomatology induced by ToLCNDV. Total DNA was extracted (DNeasy Plant Mini kit, Qiagen, Germany), and the presence of ToLCNDV was ascertained by PCR with the specific primers ToLCNDV-CP1 and ToLCNDV-CP2 (Panno et al. 2019; Parrella et al. 2018). ToLCNDV infection was further ascertained in three symptomatic leaf samples from Campania by using specific ToLCNDV ImmunoStrips (Agdia, Elkhart, IN). Successively, one symptomatic pepper sample from each greenhouse was selected and amplified by rolling circle amplification technique (RCA; Inoue-Nagata et al. 2004). The amplicons were cloned, and the DNA-A and DNA-B were full-length sequenced. The sequences were deposited in GenBank NCBI database (MK732932 DNA-A and MK732933 DNA-B, pepper sample from Campania; MK756106 DNA-A and MK756107 DNA-B, pepper sample from Lazio). The RCA analysis was performed also on a ToLCNDV-infected zucchini sample collected in the same area in Lazio region (MK756108 DNA-A and MK756109 DNA-B). The analysis of the ToLCNDV sequences showed a low level of genetic variability between the two pepper isolates from Lazio and Campania regions (rate of substitutions: 0.016 for DNA-A and 0.023 for DNA-B). A high genetic similarity was recorded between the zucchini isolate and both the pepper isolates from Campania (0.019 for DNA-A and 0.023 for DNA-B) and Lazio (0.003 for both DNA-A and B). The three characterized isolates showed a high sequence homology also with both the DNA-A (MH577751 from a melon isolate) and DNA-B (MH577673 from a zucchini isolate) of the ToLCNDV-ES genotype (Fortes et al. 2016), which differed in 15 and 13 nucleotide substitutions from pepper sample from Lazio, 29 and 51 substitutions from Campania sample, and 10 and 5 substitutions from zucchini sample. High homology was also identified compared with the other Spanish isolates collected since the first appearance of the virus (2014) and to the Tunisian (2015) and Moroccan (2018) isolates, confirming the hypothesis that the Mediterranean population of ToLCNDV is highly conserved (Juárez et al. 2019). To our knowledge, this is the first report of ToLCNDV infection on pepper in Europe and indicates that sweet pepper could also act as a reservoir of the virus for further spread to other solanaceous plants and cucurbits

    Antagonism and Antimicrobial Capacity of Epiphytic and Endophytic Bacteria against the Phytopathogen Xylella fastidiosa

    Get PDF
    Olive quick decline syndrome (OQDS), which is caused by Xylella fastidiosa, poses a severe threat to the agriculture of Mediterranean countries and causes severe damage to the olive trees in Italy. Since no effective control measures are currently available, the objective of this study was the screening of antagonistic bacteria that are potentially deployable as biocontrol agents against X. fastidiosa. Therefore, two approaches were used, i.e., the evaluation of the antagonistic activity of (i) endophytic bacteria isolated from two different cultivars of olive trees (Leccino and Ogliarola salentina) and (ii) epiphytic bacteria isolated from the phyllospheres of different host plant species of X. fastidiosa. In vitro dual culture tests showed that 12 out of 200 isolates inhibited X. fastidiosa growth, with appearances of clear zones between 4.0 and 38.6 mm. 16S rRNA gene sequencing revealed different species of the genera Paenibacillus, Bacillus, Pantoea, Microbacterium, Stenotrophomonas, Delftia, and Pseudomonas. Furthermore, an investigation for antimicrobial activity identified 5 out of the 12 antagonistic bacteria, Paenibacillus rigui, Bacillus subtilis, Bacillus pumilus, Microbacterium oxydans, and Stenotrophomonas rhizophila, that were able to produce culture filtrates with inhibitory activities. Our results are promising for further investigation to develop an eco-sustainable strategy to control X. fastidiosa using biocontrol agents or their secreted metabolites
    corecore