44,750 research outputs found

    On nucleon exchange mechanism in heavy-ion collisions at near-barrier energies

    Full text link
    Nucleon drift and diffusion mechanisms in central collisions of asymmetric heavy-ions at near-barrier energies are investigated in the framework of a stochastic mean-field approach. Expressions for diffusion and drift coefficients for nucleon transfer deduced from the stochastic mean-field approach in the semiclassical approximation have similar forms familiar from the phenomenological nucleon exchange model. The variance of fragment mass distribution agrees with the empirical formula σAA2(t)=Nexc(t)\sigma^2_{AA}(t)= N_{\rm exc}(t). The comparison with the time-dependent Hartree-Fock calculations shows that, below barrier energies, the drift coefficient in the semiclassical approximation underestimates the mean number of nucleon transfer obtained in the quantal framework. Motion of the window in the dinuclear system has a significant effect on the nucleon transfer in asymmetric collisions.Comment: 10 pages, 10 figures, submitted for publicatio

    SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases

    Get PDF
    The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.Comment: 10 pages + 2 pages appendix; 5 figures -- initial preprin

    Microwave-induced resistance oscillations and zero-resistance states in 2D electron systems with two occupied subbands

    Full text link
    We report on theoretical studies of recently discovered microwave-induced resistance oscillations and zero resistance states in Hall bars with two occupied subbands. In the same results, resistance presents a peculiar shape which appears to have a built-in interference effect not observed before. We apply the microwave-driven electron orbit model, which implies a radiation-driven oscillation of the two-dimensional electron system. Thus, we calculate different intra and inter-subband electron scattering rates and times that are revealing as different microwave-driven oscillations frequencies for the two electronic subbands. Through scattering, these subband-dependent oscillation motions interfere giving rise to a striking resistance profile. We also study the dependence of irradiated magnetoresistance with power and temperature. Calculated results are in good agreement with experiments.Comment: 7 pages, 6 figure

    Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD

    Get PDF
    We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{\eta_b} = 0.667(6) GeV. Our value for f_{\eta_b} is within a few percent of f_{\Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavy-quark mass dependence of decay constants from heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavy-light system than a heavy-heavy one. Finally we summarise current results on decay constants of gold-plated mesons.Comment: 16 pages, 12 figure

    Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics

    Get PDF
    We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading order in the quark's velocity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are at least 3--4 times smaller than the widely used ASQTAD action. We show how to estimate errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are no more than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4 errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of~111(5) MeV which compares well with experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D_s mesons.Comment: 21 pages, 8 figures, 5 table

    Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    Get PDF
    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably

    Precision Upsilon Spectroscopy from Nonrelativistic Lattice QCD

    Full text link
    The spectrum of the Upsilon system is investigated using the Nonrelativistic Lattice QCD approach to heavy quarks and ignoring light quark vacuum polarization. We find good agreement with experiment for the Upsilon(1S), Upsilon(2S), Upsilon(3S) and for the center of mass and fine structure of the chi_b states. The lattice calculations predict b-bbar D-states with center of mass at (10.20 +/- 0.07 +/- 0.03)GeV. Fitting procedures aimed at extracting both ground and excited state energies are developed. We calculate a nonperturbative dispersion mass for the Upsilon(1S) and compare with tadpole-improved lattice perturbation theory.Comment: 8 pages, latex, SCRI-94-57, OHSTPY-HEP-T-94-00

    Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics

    Full text link
    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae for ablation thresholds and ablation rates for metals and dielectrics, combining the laser and target parameters, are derived and compared to experimental data. The calculated dependence of the ablation thresholds on the pulse duration is in agreement with the experimental data in a femtosecond range, and it is linked to the dependence for nanosecond pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000; papers QMD6 and CTuK11

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    Progress in materials and structures at Lewis Research Center

    Get PDF
    The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed
    corecore