45,652 research outputs found
On nucleon exchange mechanism in heavy-ion collisions at near-barrier energies
Nucleon drift and diffusion mechanisms in central collisions of asymmetric
heavy-ions at near-barrier energies are investigated in the framework of a
stochastic mean-field approach. Expressions for diffusion and drift
coefficients for nucleon transfer deduced from the stochastic mean-field
approach in the semiclassical approximation have similar forms familiar from
the phenomenological nucleon exchange model. The variance of fragment mass
distribution agrees with the empirical formula . The comparison with the time-dependent Hartree-Fock calculations
shows that, below barrier energies, the drift coefficient in the semiclassical
approximation underestimates the mean number of nucleon transfer obtained in
the quantal framework. Motion of the window in the dinuclear system has a
significant effect on the nucleon transfer in asymmetric collisions.Comment: 10 pages, 10 figures, submitted for publicatio
Microwave-induced resistance oscillations and zero-resistance states in 2D electron systems with two occupied subbands
We report on theoretical studies of recently discovered microwave-induced
resistance oscillations and zero resistance states in Hall bars with two
occupied subbands. In the same results, resistance presents a peculiar shape
which appears to have a built-in interference effect not observed before. We
apply the microwave-driven electron orbit model, which implies a
radiation-driven oscillation of the two-dimensional electron system. Thus, we
calculate different intra and inter-subband electron scattering rates and times
that are revealing as different microwave-driven oscillations frequencies for
the two electronic subbands. Through scattering, these subband-dependent
oscillation motions interfere giving rise to a striking resistance profile. We
also study the dependence of irradiated magnetoresistance with power and
temperature. Calculated results are in good agreement with experiments.Comment: 7 pages, 6 figure
SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases
The Internet has enabled the creation of a growing number of large-scale
knowledge bases in a variety of domains containing complementary information.
Tools for automatically aligning these knowledge bases would make it possible
to unify many sources of structured knowledge and answer complex queries.
However, the efficient alignment of large-scale knowledge bases still poses a
considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a
simple algorithm for aligning knowledge bases with millions of entities and
facts. SiGMa is an iterative propagation algorithm which leverages both the
structural information from the relationship graph as well as flexible
similarity measures between entity properties in a greedy local search, thus
making it scalable. Despite its greedy nature, our experiments indicate that
SiGMa can efficiently match some of the world's largest knowledge bases with
high precision. We provide additional experiments on benchmark datasets which
demonstrate that SiGMa can outperform state-of-the-art approaches both in
accuracy and efficiency.Comment: 10 pages + 2 pages appendix; 5 figures -- initial preprin
Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD
We determine masses and decay constants of heavy-heavy and heavy-charm
pseudoscalar mesons as a function of heavy quark mass using a fully
relativistic formalism known as Highly Improved Staggered Quarks for the heavy
quark. We are able to cover the region from the charm quark mass to the bottom
quark mass using MILC ensembles with lattice spacing values from 0.15 fm down
to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and
f_{\eta_b} = 0.667(6) GeV. Our value for f_{\eta_b} is within a few percent of
f_{\Upsilon} confirming that spin effects are surprisingly small for heavyonium
decay constants. Our value for f_{B_c} is significantly lower than potential
model values being used to estimate production rates at the LHC. We discuss the
changing physical heavy-quark mass dependence of decay constants from
heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between
the three different systems confirms that the B_c system behaves in some ways
more like a heavy-light system than a heavy-heavy one. Finally we summarise
current results on decay constants of gold-plated mesons.Comment: 16 pages, 12 figure
Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics
We use perturbative Symanzik improvement to create a new staggered-quark
action (HISQ) that has greatly reduced one-loop taste-exchange errors, no
tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading
order in the quark's velocity v/c. We demonstrate with simulations that the
resulting action has taste-exchange interactions that are at least 3--4 times
smaller than the widely used ASQTAD action. We show how to estimate errors due
to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate
with simulations that such errors are no more than 1% when HISQ is used for
light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4
errors also makes HISQ the most accurate discretization currently available for
simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c
mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66,
with full-QCD gluon configurations (from MILC). We obtain a result of~111(5)
MeV which compares well with experiment. We discuss applications of this
formalism to D physics and present our first high-precision results for D_s
mesons.Comment: 21 pages, 8 figures, 5 table
Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms
An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably
Precision Upsilon Spectroscopy from Nonrelativistic Lattice QCD
The spectrum of the Upsilon system is investigated using the Nonrelativistic
Lattice QCD approach to heavy quarks and ignoring light quark vacuum
polarization. We find good agreement with experiment for the Upsilon(1S),
Upsilon(2S), Upsilon(3S) and for the center of mass and fine structure of the
chi_b states. The lattice calculations predict b-bbar D-states with center of
mass at (10.20 +/- 0.07 +/- 0.03)GeV. Fitting procedures aimed at extracting
both ground and excited state energies are developed. We calculate a
nonperturbative dispersion mass for the Upsilon(1S) and compare with
tadpole-improved lattice perturbation theory.Comment: 8 pages, latex, SCRI-94-57, OHSTPY-HEP-T-94-00
Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics
The mechanism of ablation of solids by intense femtosecond laser pulses is
described in an explicit analytical form. It is shown that at high intensities
when the ionization of the target material is complete before the end of the
pulse, the ablation mechanism is the same for both metals and dielectrics. The
physics of this new ablation regime involves ion acceleration in the
electrostatic field caused by charge separation created by energetic electrons
escaping from the target. The formulae for ablation thresholds and ablation
rates for metals and dielectrics, combining the laser and target parameters,
are derived and compared to experimental data. The calculated dependence of the
ablation thresholds on the pulse duration is in agreement with the experimental
data in a femtosecond range, and it is linked to the dependence for nanosecond
pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000;
papers QMD6 and CTuK11
Tadpole renormalization and relativistic corrections in lattice NRQCD
We make a comparison of two tadpole renormalization schemes in the context of
the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and
NRQCD actions are analyzed using the mean-link in Landau gauge, and
using the fourth root of the average plaquette . Simulations are done
for , , and systems. The hyperfine splittings are
computed both at leading and at next-to-leading order in the relativistic
expansion. Results are obtained at lattice spacings in the range of about
0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole
renormalization using . This includes much better scaling behavior of
the hyperfine splittings in the three quarkonium systems when is
used. We also find that relativistic corrections to the spin splittings are
smaller when is used, particularly for the and
systems. We also see signs of a breakdown in the NRQCD expansion when the bare
quark mass falls below about one in lattice units. Simulations with
also appear to be better behaved in this context: the bare quark masses turn
out to be larger when is used, compared to when is used on
lattices with comparable spacings. These results also demonstrate the need to
go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and
references
Progress in materials and structures at Lewis Research Center
The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed
- …