38,199 research outputs found

    Power of unentangled measurements on two antiparallel spins

    Full text link
    We consider a pair of antiparallel spins polarized in a random direction to encode quantum information. We wish to extract as much information as possible on the polarization direction attainable by an unentangled measurement, i.e., by a measurement, whose outcomes are associated with product states. We develop analytically the upper bound 0.7935 bits to the Shannon mutual information obtainable by an unentangled measurement, which is definitely less than the value 0.8664 bits attained by an entangled measurement. This proves our main result, that not every ensemble of product states can be optimally distinguished by an unentangled measurement, if the measure of distinguishability is defined in the sense of Shannon. We also present results from numerical calculations and discuss briefly the case of parallel spins.Comment: Latex file, 18 pages, 1 figure; published versio

    Convex probability domain of generalized quantum measurements

    Full text link
    Generalized quantum measurements with N distinct outcomes are used for determining the density matrix, of order d, of an ensemble of quantum systems. The resulting probabilities are represented by a point in an N-dimensional space. It is shown that this point lies in a convex domain having at most d^2-1 dimensions.Comment: 7 pages LaTeX, one PostScript figure on separate pag

    Ergodic property of Markovian semigroups on standard forms of von Neumann algebras

    Full text link
    We give sufficient conditions for ergodicity of the Markovian semigroups associated to Dirichlet forms on standard forms of von Neumann algebras constructed by the method proposed in Refs. [Par1,Par2]. We apply our result to show that the diffusion type Markovian semigroups for quantum spin systems are ergodic in the region of high temperatures where the uniqueness of the KMS-state holds.Comment: 25 page

    Optimal distinction between non-orthogonal quantum states

    Get PDF
    Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag

    A Stellar Audit: The Computation of Encounter Rates for 47 Tucanae and omega Centauri

    Full text link
    Using King-Mitchie Models, we compute encounter rates between the various stellar species in the globular clusters ω\omega Cen, and 47 Tuc. We also compute event rates for encounters between single stars and a population of primordial binaries. Using these rates, and what we have learnt from hydrodynamical simulations of encounters performed earlier, we compute the production rates of objects such as low-mass X-ray binaries (LMXBs), smothered neutron stars and blue stragglers (massive main-sequence stars). If 10\% of the stars are contained in primordial binaries, the production rate of interesting objects from encounters involving these binaries is as large as that from encounters between single stars. For example, encounters involving binaries produce a significant number of blue stragglers in both globular cluster models. The number of smothered neutron stars may exceed the number of low-mass X-ray binaries (LMXBs) by a factor of 5-20, which may help explain why millisecond pulsars are observed to outnumber LMXBs in globular clusters.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    The Energy-Momentum Tensor in Fulling-Rindler Vacuum

    Full text link
    The energy density in Fulling-Rindler vacuum, which is known to be negative "everywhere" is shown to be positive and singular on the horizons in such a fashion as to guarantee the positivity of the total energy. The mechanism of compensation is displayed in detail.Comment: 9 pages, ULB-TH-15/9

    Source parameters of earthquakes, and discrimination between earthquakes and nuclear explosions

    Get PDF
    The first part of this study describes a technique by which the source parameters of an earthquake can be obtained from the spectrum of compressional waves. The source parameters defined are fault length, fracture velocity, and fault plane attitude. Two large, deep earthquakes are examined using this technique. The source parameters determined compare favorably with those obtained previously using different techniques. In the second section a method is proposed for discrimination between underground explosions and earthquakes. The technique utilizes the ratio of the spectrums of the two classes of events where the path of propagation is common to both. On the basis of the analysis of the SHOAL event and a nearby shallow earthquake it appears that the duration as determined from the spectral ratio is almost 10 times smaller for an explosion than it is for a comparable earthquake

    Hydrogen contamination in Ge-doped SiO[sub 2] thin films prepared by helicon activated reactive evaporation

    Get PDF
    Germanium-doped silicon oxidethin films were deposited at low temperature by using an improved helicon plasma assisted reactive evaporation technique. The origins of hydrogen contamination in the film were investigated, and were found to be H incorporation during deposition and postdeposition water absorption. The H incorporation during deposition was avoided by using an effective method to eliminate the residual hydrogen present in the depositionsystem. The microstructure, chemical bonds, chemical etch rate, and optical index of the films were studied as a function of the deposition conditions. Granular microstructures were observed in low-density films, and were found to be the cause of postdeposition water absorption. The granular microstructure was eliminated and the film was densified by increasing the helicon plasma power and substrate bias during deposition. A high-density film was shown to have no postdeposition water absorption and no OH detected by using a Fourier-transform infrared spectrometer
    • …
    corecore