21,127 research outputs found

    A review of recent determinations of the composition and surface pressure of the atmos- phere of mars

    Get PDF
    Recent determinations of composition and surface pressure of Mars atmospher

    Letter sent to the members and associates of the American Institute of Accountants

    Get PDF
    https://egrove.olemiss.edu/aicpa_assoc/1340/thumbnail.jp

    Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data

    Get PDF
    Analysis of global traveltime data has been formulated in terms of the stochastic properties of the Earth's heterogeneity pattern and random errors in the data. The formalism relates the coherency of traveltime residuals within bundles of rays (summary rays) of varying size to the spherical harmonic power spectrum of the slowness field of the medium. It has been applied to mantle P-wave data from the ISC catalogue. The measure of coherency is the variance within summary rays. It is estimated within bins in source depth, epicentral distance and the scale size of the area defining a summary ray. The variance at infinitesimal scale length represents the incoherent component of the data (random errors). The variation of the variance with scale length contains information about the autocorrelation function or power spectrum of slowness perturbations within the Earth. The variation with epicentral distance reflects the depth variation of the spectrum. The formalism accounts for the uneven distribution (clustering) of stations and events. We find that estimates of random errors correlate well with complexities on the traveltime curve of P-waves. The variance peaks at 1.0–2.0 s^2 at Δ ≈ 20°, where triplications occur on the traveltime curve, drops to 0.15–0.8s^2 at teleseismic distances, and rises to 0.4–1.3 s^2 approaching the core shadow, where the traveltime curves of P-waves and PcP-waves merge. These estimates should be considered upper bounds for the random error variance of the data. The signal to random noise ratio in the teleseismic ISC P-wave data is about S/N ≈ 2. Inversion of the scale-dependent structural signal in the data yields models that concentrate heterogeneity strongly in the upper mantle. The product of correlation length and power drops by about two orders of magnitude from the surface of the Earth to the lower mantle. About half of this quantity in the upper mantle is due to small-scale features (<300km). The lower mantle is devoid of small-scale structure. It contains 0.1 per cent velocity variations at a characteristic scale of about 1000km. This corresponds to a spectral band-width of l ≈ 7. The D″ layer at the bottom 100–200 km of the mantle shows up as a distinct layer in our results. It has 0.3 per cent velocity variations at a characteristic scale of 350km. The top of the lower mantle contains 0.3 per cent velocity variations on a scale of 500km and also contains some small-scale power. These results are compatible with previous deterministic lower mantle studies, although some details differ. The strength of heterogeneity in the upper mantle may obscure attempts to model the Earth's deep interior

    Environment Induced Entanglement in Markovian Dissipative Dynamics

    Full text link
    We show that two, non interacting 2-level systems, immersed in a common bath, can become mutually entangled when evolving according to a Markovian, completely positive reduced dynamics.Comment: 4 pages, LaTex, no figures, added reference

    Metastability in the BCS model

    Full text link
    We discuss metastable states in the mean-field version of the strong coupling BCS-model and study the evolution of a superconducting equilibrium state subjected to a dynamical semi-group with Lindblad generator in detailed balance w.r.t. another equilibrium state. The intermediate states are explicitly constructed and their stability properties are derived. The notion of metastability in this genuine quantum system, is expressed by means of energy-entropy balance inequalities and canonical coordinates of observables

    Massless interacting particles

    Full text link
    We show that classical electrodynamics of massless charged particles and the Yang--Mills theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We consider a version of the direct interparticle action theory for these systems following the general strategy of Wheeler and Feynman.Comment: LaTeX; 20 pages; V4: discussion is slightly modified to clarify some important points, relevant references are adde

    Kovacs effects in an aging molecular liquid

    Full text link
    We study by means of molecular dynamics simulations the aging behavior of a molecular model of ortho-terphenyl. We find evidence of a a non-monotonic evolution of the volume during an isothermal-isobaric equilibration process, a phenomenon known in polymeric systems as Kovacs effect. We characterize this phenomenology in terms of landscape properties, providing evidence that, far from equilibrium, the system explores region of the potential energy landscape distinct from the one explored in thermal equilibrium. We discuss the relevance of our findings for the present understanding of the thermodynamics of the glass state.Comment: RevTeX 4, 4 pages, 5 eps figure

    Extreme Covariant Quantum Observables in the Case of an Abelian Symmetry Group and a Transitive Value Space

    Full text link
    We represent quantum observables as POVMs (normalized positive operator valued measures) and consider convex sets of observables which are covariant with respect to a unitary representation of a locally compact Abelian symmetry group GG. The value space of such observables is a transitive GG-space. We characterize the extreme points of covariant observables and also determine the covariant extreme points of the larger set of all quantum observables. The results are applied to position, position difference and time observables.Comment: 23 page

    Critical Behavior of Dimensionally Continued Black Holes

    Full text link
    The critical behavior of black holes in even and odd dimensional spacetimes is studied based on Ba\~nados-Teitelboim-Zanelli (BTZ) dimensionally continued black holes. In even dimensions it is found that asymptotically flat and anti de-Sitter Reissner-Nordstr\"om black holes present up to two second order phase transitions. The case of asymptotically anti-de-Sitter Schwarzschild black holes present only one critical transition and a minimum of temperature, which occurs at the transition. Finally, it is shown that phase transitions are absent in odd dimensions.Comment: 21 pages in Latex format, no figures, vastly improved version to appear in Phys. Rev.

    Density of critical points for a Gaussian random function

    Full text link
    Critical points of a scalar quantitiy are either extremal points or saddle points. The character of the critical points is determined by the sign distribution of the eigenvalues of the Hessian matrix. For a two-dimensional homogeneous and isotropic random function topological arguments are sufficient to show that all possible sign combinations are equidistributed or with other words, the density of the saddle points and extrema agree. This argument breaks down in three dimensions. All ratios of the densities of saddle points and extrema larger than one are possible. For a homogeneous Gaussian random field one finds no longer an equidistribution of signs, saddle points are slightly more frequent.Comment: 11 pages 1 figure, changes in list of references, corrected typo
    • …
    corecore