7,760 research outputs found

    A Relaxation Station in Every Location

    Get PDF
    Inclusive classrooms with complex, diverse students have many challenges, including that of effective physical design. One included element that should be considered is a relaxation station, designed to teach and promote everyday self-regulation skills within a calmer and more private space. A relaxation station is an essential component in every classroom to support sensory needs, self-regulation, and so on, in an everyday and easily accessible manner appropriate for students with disabilities and their typical peers. This article presents a rationale as well as practical guidelines on how to develop such a space effectively, including recommendations for its design (e.g., boundaries), procedures (e.g., entry/exit), and elements (e.g., items, tools, and visuals)

    Moving Mirrors and Thermodynamic Paradoxes

    Get PDF
    Quantum fields responding to "moving mirrors" have been predicted to give rise to thermodynamic paradoxes. I show that the assumption in such work that the mirror can be treated as an external field is invalid: the exotic energy-transfer effects necessary to the paradoxes are well below the scales at which the model is credible. For a first-quantized point-particle mirror, it appears that exotic energy-transfers are lost in the quantum uncertainty in the mirror's state. An accurate accounting of these energies will require a model which recognizes the mirror's finite reflectivity, and almost certainly a model which allows for the excitation of internal mirror modes, that is, a second-quantized model.Comment: 7 pages, Revtex with Latex2

    Autism Spectrum Disorder and Maternal Employment Barriers: A Comprehensive Gender-Based Inquiry

    Get PDF
    This paper presents a systematic literature review of the autism spectrum disorder (ASD) and maternal employment disruption in order to explore what mothers of these children do using a critical lens. Although a broad range of peer-reviewed scholarly publications exist on many topics related to ASD, specific family issues such as the potential employment challenges of the maternal employment of children with ASD, have been explored in less detail until recently. ASD has generated much discussion and research. We report the most recent data over the last decade.Through a comprehensive literature review, we identify a range of papers on the topic of ASD and parental employment disruption. This project, then, highlights relevant international Canadian and internationals research findings, including the United States, China, the United Kingdom (UK) and Sweden. The review and its critical commentary show how structures which act to exclude children with ASD cause parents to seek employment adjustments in order to manage their complex situations. Parents, especially mothers of children with ASD, have fewer employment opportunities. This situation has substantial economic impact on families. This trend extends beyond preschool child care as obtaining capable and reliable child care support is an ongoing issue that exists well into the school years—and beyond. Supportive, accommodating, and especially flexible employment situations make employment possible, at times, for mothers of children with ASD

    `Operational' Energy Conditions

    Full text link
    I show that a quantized Klein-Gordon field in Minkowski space obeys an `operational' weak energy condition: the energy of an isolated device constructed to measure or trap the energy in a region, plus the energy it measures or traps, cannot be negative. There are good reasons for thinking that similar results hold locally for linear quantum fields in curved space-times. A thought experiment to measure energy density is analyzed in some detail, and the operational positivity is clearly manifested. If operational energy conditions do hold for quantum fields, then the negative energy densities predicted by theory have a will-o'-the-wisp character: any local attempt to verify a total negative energy density will be self-defeating on account of quantum measurement difficulties. Similarly, attempts to drive exotic effects (wormholes, violations of the second law, etc.) by such densities may be defeated by quantum measurement problems. As an example, I show that certain attempts to violate the Cosmic Censorship principle by negative energy densities are defeated. These quantum measurement limitations are investigated in some detail, and are shown to indicate that space-time cannot be adequately modeled classically in negative energy density regimes.Comment: 18 pages, plain Tex, IOP macros. Expanded treatment of measurement problems for space-time, with implications for Cosmic Censorship as an example. Accepted by Classical and Quantum Gravit

    Relaxation Station, Zen Zone, or Cozy Corner

    Get PDF
    Today’s inclusive classrooms feature many diverse groups of students who have a need for teaching and supporting effective self-regulation skills. One element of classroom design that can support this area of need that permeates everyday interactions – and classroom successes – is the creation of a classroom space where all students can head for reflection, relaxation, and self-calming. Although such spaces can be beneficial for many students, it can be essential for some students, such as students with Autism Spectrum Disorder who are beginning to learn strategies to self-regulate in group settings like classrooms. Because such spaces are not restricted by age or grade and can support students with or without exceptionalities, a range of students in varying classrooms and schools can use this approach for those moments of every day disquiet, stress, or anxiety that occur throughout the school day

    Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study.

    Get PDF
    BACKGROUND: Non-pharmaceutical interventions have been implemented to reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the UK. Projecting the size of an unmitigated epidemic and the potential effect of different control measures has been crucial to support evidence-based policy making during the early stages of the epidemic. This study assesses the potential impact of different control measures for mitigating the burden of COVID-19 in the UK. METHODS: We used a stochastic age-structured transmission model to explore a range of intervention scenarios, tracking 66·4 million people aggregated to 186 county-level administrative units in England, Wales, Scotland, and Northern Ireland. The four base interventions modelled were school closures, physical distancing, shielding of people aged 70 years or older, and self-isolation of symptomatic cases. We also modelled the combination of these interventions, as well as a programme of intensive interventions with phased lockdown-type restrictions that substantially limited contacts outside of the home for repeated periods. We simulated different triggers for the introduction of interventions, and estimated the impact of varying adherence to interventions across counties. For each scenario, we projected estimated new cases over time, patients requiring inpatient and critical care (ie, admission to the intensive care units [ICU]) treatment, and deaths, and compared the effect of each intervention on the basic reproduction number, R0. FINDINGS: We projected a median unmitigated burden of 23 million (95% prediction interval 13-30) clinical cases and 350 000 deaths (170 000-480 000) due to COVID-19 in the UK by December, 2021. We found that the four base interventions were each likely to decrease R0, but not sufficiently to prevent ICU demand from exceeding health service capacity. The combined intervention was more effective at reducing R0, but only lockdown periods were sufficient to bring R0 near or below 1; the most stringent lockdown scenario resulted in a projected 120 000 cases (46 000-700 000) and 50 000 deaths (9300-160 000). Intensive interventions with lockdown periods would need to be in place for a large proportion of the coming year to prevent health-care demand exceeding availability. INTERPRETATION: The characteristics of SARS-CoV-2 mean that extreme measures are probably required to bring the epidemic under control and to prevent very large numbers of deaths and an excess of demand on hospital beds, especially those in ICUs. FUNDING: Medical Research Council

    Electronic transport in two dimensional graphene

    Full text link
    We provide a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures. A salient feature of our review is a critical comparison between carrier transport in graphene and in two-dimensional semiconductor systems (e.g. heterostructures, quantum wells, inversion layers) so that the unique features of graphene electronic properties arising from its gap- less, massless, chiral Dirac spectrum are highlighted. Experiment and theory as well as quantum and semi-classical transport are discussed in a synergistic manner in order to provide a unified and comprehensive perspective. Although the emphasis of the review is on those aspects of graphene transport where reasonable consensus exists in the literature, open questions are discussed as well. Various physical mechanisms controlling transport are described in depth including long- range charged impurity scattering, screening, short-range defect scattering, phonon scattering, many-body effects, Klein tunneling, minimum conductivity at the Dirac point, electron-hole puddle formation, p-n junctions, localization, percolation, quantum-classical crossover, midgap states, quantum Hall effects, and other phenomena.Comment: Final version as accepted for publication in Reviews of Modern Physics (in press), 69 pages with 38 figure

    Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    Get PDF
    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike

    The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study.

    Get PDF
    BACKGROUND: In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of the world. METHODS: To examine how changes in population mixing have affected outbreak progression in Wuhan, we used synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the beginning of March or April). FINDINGS: Our projections show that physical distancing measures were most effective if the staggered return to work was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66-97) and 24% (13-90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the duration of infectiousness and the role school children have in the epidemic. INTERPRETATION: Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, including large uncertainties around estimates of R0 and the duration of infectiousness. FUNDING: Bill & Melinda Gates Foundation, National Institute for Health Research, Wellcome Trust, and Health Data Research UK

    An O-Antigen glycoconjugate vaccine produced using protein glycan coupling technology is protective in an inhalational rat model of tularemia

    Get PDF
    There is a requirement for an efficacious vaccine to protect people against infection from Francisella tularensis, the etiological agent of tularemia. The lipopolysaccharide (LPS) of F. tularensis is suboptimally protective against a parenteral lethal challenge in mice. To develop a more efficacious subunit vaccine, we have used a novel biosynthetic technique of protein glycan coupling technology (PGCT) that exploits bacterial N-linked glycosylation to recombinantly conjugate F. tularensis O-antigen glycans to the immunogenic carrier protein Pseudomonas aeruginosa exoprotein A (ExoA). Previously, we demonstrated that an ExoA glycoconjugate with two glycosylation sequons was capable of providing significant protection to mice against a challenge with a low-virulence strain of F. tularensis. Here, we have generated a more heavily glycosylated conjugate vaccine and evaluated its efficacy in a Fischer 344 rat model of tularemia. We demonstrate that this glycoconjugate vaccine protected rats against disease and the lethality of an inhalational challenge with F. tularensis Schu S4. Our data highlights the potential of this biosynthetic approach for the creation of next-generation tularemia subunit vaccines
    • …
    corecore