51,692 research outputs found

    Geometric phases in a scattering process

    Full text link
    The study of geometric phase in quantum mechanics has so far be confined to discrete (or continuous) spectra and trace preserving evolutions. Consider only the transmission channel, a scattering process with internal degrees of freedom is neither a discrete spectrum problem nor a trace preserving process. We explore the geometric phase in a scattering process taking only the transmission process into account. We find that the geometric phase can be calculated by the some method as in an unitary evolution. The interference visibility depends on the transmission amplitude. The dependence of the geometric phase on the barrier strength and the spin-spin coupling constant is also presented and discussed.Comment: 4 pages, 5 figure

    WECOF: A new project developing enhanced weed control through improved crop and plant architecture

    Get PDF
    A primary objective of the EU-funded WECOF project is to optimise the natural competitiveness of winter wheat in reducing weed growth, and thus reduce the need for direct weed control interventions. Crops are characterised by ranking the relative importance of key plant and crop factors in shading weed growth. A series of core trials have been established in Germany, Scotland, Poland and Spain comparing plant structure by the use of different varieties and crop architectural factors by the use of different sowing row widths and direction. Variety trials have also been established in Scotland with constant row width and sowing direction to give more detailed varietal comparisons. Results from the first set of trials in Scotland are described. There are clear varietal differences in weed suppression; row-width has a bigger effect than sowing direction. Results will be used to develop models to assist breeders in producing improved crop ideotypes for organic production, and in production of a decision support system to assist farmers and advisers in variety selection and management for improved weed suppression. WECOF also includes work on allelopathy and photocontrol, and on the related economic factors

    Mean link versus average plaquette tadpoles in lattice NRQCD

    Get PDF
    We compare mean-link and average plaquette tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Simulations are done for the three quarkonium systems ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at a large number of lattice spacings. A number of features emerge, all of which favor tadpole renormalization using mean links. This includes much better scaling of the hyperfine splittings in the three quarkonium systems. We also find that relativistic corrections to the spin splittings are smaller with mean-link tadpoles, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units (with the bare quark masses turning out to be much larger with mean-link tadpoles).Comment: LATTICE(heavyqk) 3 pages, 2 figure

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    Quarkonium spin structure in lattice NRQCD

    Get PDF
    Numerical simulations of the quarkonium spin splittings are done in the framework of lattice nonrelativistic quantum chromodynamics (NRQCD). At leading order in the velocity expansion the spin splittings are of O(MQv4)O(M_Q v^4), where MQM_Q is the renormalized quark mass and v2v^2 is the mean squared quark velocity. A systematic analysis is done of all next-to-leading order corrections. This includes the addition of O(MQv6)O(M_Q v^6) relativistic interactions, and the removal of O(a2MQv4)O(a^2 M_Q v^4) discretization errors in the leading-order interactions. Simulations are done for both S- and P-wave mesons, with a variety of heavy quark actions and over a wide range of lattice spacings. Two prescriptions for the tadpole improvement of the action are also studied in detail: one using the measured value of the average plaquette, the other using the mean link measured in Landau gauge. Next-to-leading order interactions result in a very large reduction in the charmonium splittings, down by about 60% from their values at leading order. There are further indications that the velocity expansion may be poorly convergent for charmonium. Prelimary results show a small correction to the hyperfine splitting in the Upsilon system.Comment: 16 pages, REVTEX v3.1, 5 postscript figures include

    New Cosmological Structures on Medium Angular Scales Detected with the Tenerife Experiments

    Get PDF
    We present observations at 10 and 15 GHz taken with the Tenerife experiments in a band of the sky at Dec.=+35 degrees. These experiments are sensitive to multipoles in the range l=10-30. The sensitivity per beam is 56 and 20 microK for the 10 and the 15 GHz data, respectively. After subtraction of the prediction of known radio-sources, the analysis of the data at 15 GHz at high Galactic latitude shows the presence of a signal with amplitude Delta Trms ~ 32 microK. In the case of a Harrison-Zeldovich spectrum for the primordial fluctuations, a likelihood analysis shows that this signal corresponds to a quadrupole amplitude Q_rms-ps=20.1+7.1-5.4 microK, in agreement with our previous results at Dec.+=40 degrees and with the results of the COBE DMR. There is clear evidence for the presence of individual features in the RA range 190 degrees to 250 degrees with a peak to peak amplitude of ~110 microK. A preliminary comparison between our results and COBE DMR predictions for the Tenerife experiments clearly indicates the presence of individual features common to both. The constancy in amplitude over such a large range in frequency (10-90 GHz) is strongly indicative of an intrinsic cosmological origin for these structures.Comment: ApJ Letters accepted, 13 pages Latex (uses AASTEX) and 4 encapsulated postscript figures

    Intrinsic Curie temperature bistability in ferromagnetic semiconductor resonant tunneling diodes

    Full text link
    We predict bistability in the Curie temperature-voltage characteristic of double barrier resonant-tunneling structures with dilute ferromagnetic semiconductor quantum wells. Our conclusions are based on simulations of electrostatics and ballistic quantum transport combined with a mean-field theory description of ferromagnetism in dilute magnetic semiconductors.Comment: 10 pages, 3 figures, submitted to Phys. Rev. B; typo removed in revised version - spurious eq.12 immediately after eq.1

    An initial evaluation of a biohygrothermal model for the purpose of assessing the risk mould growth in UK dwellings

    Get PDF
    Moulds are organisms that may be found in both the indoor and outdoor environment. Moulds play an important rolebreaking down and digesting organic material, but, if they are significantly present in the indoor environment they mayaffect the health of the occupants. A relative humidity of 80% at wall surfaces is frequently stated as the decisivecriterion for mould growth and methods used to assess the risk of mould growth are often based on steady stateconditions. However, considering the dynamic conditions typically found in the indoor environment, a betterunderstanding of the conditions required for mould to grow would seem desirable. This paper presents initialexploratory work to evaluate and assess ‘WUFI-bio’ - ‘biohygrothermal’ software that predicts the likelihood of mould growth under transient conditions. Model predictions are compared with large monitored data set from 1,388 UKdwellings before and after insulation and new heating systems are installed (‘Warm Front’), the suitability of thissoftware as a tool to predict mould growth will ultimately be assessed. This paper presents some initial, exploratorywork

    Magneto-capacitance probing of the many-particle states in InAs dots

    Full text link
    We use frequency-dependent capacitance-voltage spectroscopy to measure the tunneling probability into self-assembled InAs quantum dots. Using an in-plane magnetic field of variable strength and orientation, we are able to obtain information on the quasi-particle wave functions in momentum space for 1 to 6 electrons per dot. For the lowest two energy states, we find a good agreement with Gaussian functions for a harmonic potential. The high energy orbitals exhibit signatures of anisotropic confinement and correlation effects.Comment: 3 pages, 3 figure
    • …
    corecore