84,204 research outputs found

    How bio-friendly is the universe

    Full text link
    The oft-repeated claim that life is written into the laws of nature are examined and criticized. Arguments are given in favour of life spreading between near-neighbour planets in rocky impact ejecta (transpermia), but against panspermia, leading to the conclusion that if life is indeed found to be widespread in the universe, some form of life principle or biological determinism must be at work in the process of biogenesis. Criteria for what would constitute a credible life principle are elucidated. I argue that the key property of life is its information content, and speculate that the emergence of the requisite information-processing machinery might require quantum information theory for a satisfactory explanation. Some clues about how decoherence might be evaded are discussed. The implications of some of these ideas for fine tuning are discussed.Comment: 11 page conference report, no figure

    Quantum mechanics and the equivalence principle

    Full text link
    A quantum particle moving in a gravitational field may penetrate the classically forbidden region of the gravitational potential. This raises the question of whether the time of flight of a quantum particle in a gravitational field might deviate systematically from that of a classical particle due to tunnelling delay, representing a violation of the weak equivalence principle. I investigate this using a model quantum clock to measure the time of flight of a quantum particle in a uniform gravitational field, and show that a violation of the equivalence principle does not occur when the measurement is made far from the turning point of the classical trajectory. I conclude with some remarks about the strong equivalence principle in quantum mechanics.Comment: 10 pages, 1 figure, research pape

    Quantum fluctuations and life

    Full text link
    There have been many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms, beyond merely providing the basis for the shapes and sizes of biological molecules and their chemical affinities. These range from the suggestion by Schrodinger that quantum fluctuations produce mutations, to the conjecture by Hameroff and Penrose that quantum coherence in microtubules is linked to consciousness. I review some of these claims in this paper, and discuss the serious problem of decoherence. I advance some further conjectures about quantum information processing in bio-systems. Some possible experiments are suggested.Comment: 10 pages, no figures, conference pape

    Calibrating the parameters: changing hearts and minds about open access monographs

    Get PDF
    The advent of open access (OA) publishing presents welcome new opportunities for reducing the barriers of cost and time to the dissemination of research work in UK universities. However, it does present some challenges to the traditional model of monograph publication in the humanities and social sciences. In common with many other academic institutions, the University of Sussex is developing policies that will permit it to embrace OA publication. This paper describes how, in doing this, Sussex is addressing the challenges associated with OA to ensure that the careers of doctoral students, academics and researchers are not affected adversely by the change in the publishing landscape for monographs both in the UK and internationall

    Probing the Low Surface Brightness Dwarf Galaxy Population of the Virgo Cluster

    Full text link
    We have used public data from the Next Generation Virgo Survey (NGVS) to investigate the dwarf galaxy population of the Virgo cluster beyond what has previously been discovered. We initially mask and smooth the data, and then use the object detection algorithm Sextractor to make our initial dwarf galaxy selection. All candidates are then visually inspected to remove artefacts and duplicates. We derive Sextractor parameters to best select low surface brightness galaxies using g band central surface brightness values of 22.5 to 26.0 mag sq arc sec and exponential scale lengths of 3.0 - 10.0 arc sec to identify 443 cluster dwarf galaxies - 303 of which are new detections. These new detections have a surface density that decreases with radius from the cluster centre. We also apply our selection algorithm to 'background', non-cluster, fields and find zero detections. In combination, this leads us to believe that we have isolated a cluster dwarf galaxy population. The range of objects we are able to detect is limited because smaller scale sized galaxies are confused with the background, while larger galaxies are split into numerous smaller objects by the detection algorithm. Using data from previous surveys combined with our data, we find a faint end slope to the luminosity function of -1.35+/-0.03, which does not significantly differ to what has previously been found for the Virgo cluster, but is a little steeper than the slope for field galaxies. There is no evidence for a faint end slope steep enough to correspond with galaxy formation models, unless those models invoke either strong feedback processes or use warm dark matter.Comment: Accepted for publication in MNRA

    New methods for B meson decay constants and form factors from lattice NRQCD

    Get PDF
    We determine the normalisation of scalar and pseudoscalar current operators made from non-relativistic bb quarks and Highly Improved Staggered light quarks in lattice Quantum Chromodynamics (QCD) through O(αs)\mathcal{O}(\alpha_s) and ΛQCD/mb\Lambda_{\text{QCD}}/m_b. We use matrix elements of these operators to extract BB meson decay constants and form factors, then compare to those obtained using the standard vector and axial-vector operators. This provides a test of systematic errors in the lattice QCD determination of the BB meson decay constants and form factors. We provide a new value for the BB and BsB_s meson decay constants from lattice QCD calculations on ensembles that include uu, dd, ss and cc quarks in the sea and those which have the u/du/d quark mass going down to its physical value. Our results are fB=0.196(6)f_B=0.196(6) GeV, fBs=0.236(7)f_{B_s}=0.236(7) GeV and fBs/fB=1.207(7)f_{B_s}/f_B =1.207(7), agreeing well with earlier results using the temporal axial current. By combining with these previous results, we provide updated values of fB=0.190(4)f_B=0.190(4) GeV, fBs=0.229(5)f_{B_s}=0.229(5) GeV and fBs/fB=1.206(5)f_{B_s}/f_B = 1.206(5).Comment: 14 pages, 10 figure

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references
    • …
    corecore